3,467 research outputs found

    A Multi-scale View of the Emergent Complexity of Life: A Free-energy Proposal

    Get PDF
    We review some of the main implications of the free-energy principle (FEP) for the study of the self-organization of living systems – and how the FEP can help us to understand (and model) biotic self-organization across the many temporal and spatial scales over which life exists. In order to maintain its integrity as a bounded system, any biological system - from single cells to complex organisms and societies - has to limit the disorder or dispersion (i.e., the long-run entropy) of its constituent states. We review how this can be achieved by living systems that minimize their variational free energy. Variational free energy is an information theoretic construct, originally introduced into theoretical neuroscience and biology to explain perception, action, and learning. It has since been extended to explain the evolution, development, form, and function of entire organisms, providing a principled model of biotic self-organization and autopoiesis. It has provided insights into biological systems across spatiotemporal scales, ranging from microscales (e.g., sub- and multicellular dynamics), to intermediate scales (e.g., groups of interacting animals and culture), through to macroscale phenomena (the evolution of entire species). A crucial corollary of the FEP is that an organism just is (i.e., embodies or entails) an implicit model of its environment. As such, organisms come to embody causal relationships of their ecological niche, which, in turn, is influenced by their resulting behaviors. Crucially, free-energy minimization can be shown to be equivalent to the maximization of Bayesian model evidence. This allows us to cast natural selection in terms of Bayesian model selection, providing a robust theoretical account of how organisms come to match or accommodate the spatiotemporal complexity of their surrounding niche. In line with the theme of this volume; namely, biological complexity and self-organization, this chapter will examine a variational approach to self-organization across multiple dynamical scales

    LSTM-based Anomaly Detection for Non-linear Dynamical System

    Get PDF
    Anomaly detection for non-linear dynamical system plays an important role in ensuring the system stability. However, it is usually complex and has to be solved by large-scale simulation which requires extensive computing resources. In this paper, we propose a novel anomaly detection scheme in non-linear dynamical system based on Long Short-Term Memory (LSTM) to capture complex temporal changes of the time sequence and make multi-step predictions. Specifically, we first present the framework of LSTM-based anomaly detection in non-linear dynamical system, including data preprocessing, multi-step prediction and anomaly detection. According to the prediction requirement, two types of training modes are explored in multi-step prediction, where samples in a wall shear stress dataset are collected by an adaptive sliding window. On the basis of the multi-step prediction result, a Local Average with Adaptive Parameters (LAAP) algorithm is proposed to extract local numerical features of the time sequence and estimate the upcoming anomaly. The experimental results show that our proposed multi-step prediction method can achieve a higher prediction accuracy than traditional method in wall shear stress dataset, and the LAAP algorithm performs better than the absolute value-based method in anomaly detection task.Comment: 8 pages, 6 figure

    ToyArchitecture: Unsupervised Learning of Interpretable Models of the World

    Full text link
    Research in Artificial Intelligence (AI) has focused mostly on two extremes: either on small improvements in narrow AI domains, or on universal theoretical frameworks which are usually uncomputable, incompatible with theories of biological intelligence, or lack practical implementations. The goal of this work is to combine the main advantages of the two: to follow a big picture view, while providing a particular theory and its implementation. In contrast with purely theoretical approaches, the resulting architecture should be usable in realistic settings, but also form the core of a framework containing all the basic mechanisms, into which it should be easier to integrate additional required functionality. In this paper, we present a novel, purposely simple, and interpretable hierarchical architecture which combines multiple different mechanisms into one system: unsupervised learning of a model of the world, learning the influence of one's own actions on the world, model-based reinforcement learning, hierarchical planning and plan execution, and symbolic/sub-symbolic integration in general. The learned model is stored in the form of hierarchical representations with the following properties: 1) they are increasingly more abstract, but can retain details when needed, and 2) they are easy to manipulate in their local and symbolic-like form, thus also allowing one to observe the learning process at each level of abstraction. On all levels of the system, the representation of the data can be interpreted in both a symbolic and a sub-symbolic manner. This enables the architecture to learn efficiently using sub-symbolic methods and to employ symbolic inference.Comment: Revision: changed the pdftitl

    Hidden Markov modelling of movement data from fish

    Get PDF

    Reinforcement learning or active inference?

    Get PDF
    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain

    On the Importance of Being Flexible: Dynamic Brain Networks and Their Potential Functional Significances

    Get PDF
    In this theoretical review, we begin by discussing brains and minds from a dynamical systems perspective, and then go on to describe methods for characterizing the flexibility of dynamic networks. We discuss how varying degrees and kinds of flexibility may be adaptive (or maladaptive) in different contexts, specifically focusing on measures related to either more disjoint or cohesive dynamics. While disjointed flexibility may be useful for assessing neural entropy, cohesive flexibility may potentially serve as a proxy for self-organized criticality as a fundamental property enabling adaptive behavior in complex systems. Particular attention is given to recent studies in which flexibility methods have been used to investigate neurological and cognitive maturation, as well as the breakdown of conscious processing under varying levels of anesthesia. We further discuss how these findings and methods might be contextualized within the Free Energy Principle with respect to the fundamentals of brain organization and biological functioning more generally, and describe potential methodological advances from this paradigm. Finally, with relevance to computational psychiatry, we propose a research program for obtaining a better understanding of ways that dynamic networks may relate to different forms of psychological flexibility, which may be the single most important factor for ensuring human flourishing.Peer Reviewe

    Visual motion processing and human tracking behavior

    Full text link
    The accurate visual tracking of a moving object is a human fundamental skill that allows to reduce the relative slip and instability of the object's image on the retina, thus granting a stable, high-quality vision. In order to optimize tracking performance across time, a quick estimate of the object's global motion properties needs to be fed to the oculomotor system and dynamically updated. Concurrently, performance can be greatly improved in terms of latency and accuracy by taking into account predictive cues, especially under variable conditions of visibility and in presence of ambiguous retinal information. Here, we review several recent studies focusing on the integration of retinal and extra-retinal information for the control of human smooth pursuit.By dynamically probing the tracking performance with well established paradigms in the visual perception and oculomotor literature we provide the basis to test theoretical hypotheses within the framework of dynamic probabilistic inference. We will in particular present the applications of these results in light of state-of-the-art computer vision algorithms

    Physical Activity Recognition and Identification System

    Get PDF
    Background: It is well-established that physical activity is beneficial to health. It is less known how the characteristics of physical activity impact health independently of total amount. This is due to the inability to measure these characteristics in an objective way that can be applied to large population groups. Accelerometry allows for objective monitoring of physical activity but is currently unable to identify type of physical activity accurately. Methods: This thesis details the creation of an activity classifier that can identify type from accelerometer data. The current research in activity classification was reviewed and methodological challenges were identified. The main challenge was the inability of classifiers to generalize to unseen data. Creating methods to mitigate this lack of generalisation represents the bulk of this thesis. Using the review, a classification pipeline was synthesised, representing the sequence of steps that all activity classifiers use. 1. Determination of device location and setting (Chapter 4) 2. Pre-processing (Chapter 5) 3. Segmenting into windows (Chapters 6) 4. Extracting features (Chapters 7,8) 5. Creating the classifier (Chapter 9) 6. Post-processing (Chapter 5) For each of these steps, methods were created and tested that allowed for a high level of generalisability without sacrificing overall performance. Results: The work in this thesis results in an activity classifier that had a good ability to generalize to unseen data. The classifier achieved an F1-score of 0.916 and 0.826 on data similar to its training data, which is statistically equivalent to the performance of current state of the art models (0.898, 0.765). On data dissimilar to its training data, the classifier achieved a significantly higher performance than current state of the art methods (0.759, 0.897 versus 0.352, 0.415). This shows that the classifier created in this work has a significantly greater ability to generalise to unseen data than current methods. Conclusion: This thesis details the creation of an activity classifier that allows for an improved ability to generalize to unseen data, thus allowing for identification of type from acceleration data. This should allow for more detailed investigation into the specific health effects of type in large population studies utilising accelerometers

    Modeling the mobility of living organisms in heterogeneous landscapes: Does memory improve foraging success?

    Full text link
    Thanks to recent technological advances, it is now possible to track with an unprecedented precision and for long periods of time the movement patterns of many living organisms in their habitat. The increasing amount of data available on single trajectories offers the possibility of understanding how animals move and of testing basic movement models. Random walks have long represented the main description for micro-organisms and have also been useful to understand the foraging behaviour of large animals. Nevertheless, most vertebrates, in particular humans and other primates, rely on sophisticated cognitive tools such as spatial maps, episodic memory and travel cost discounting. These properties call for other modeling approaches of mobility patterns. We propose a foraging framework where a learning mobile agent uses a combination of memory-based and random steps. We investigate how advantageous it is to use memory for exploiting resources in heterogeneous and changing environments. An adequate balance of determinism and random exploration is found to maximize the foraging efficiency and to generate trajectories with an intricate spatio-temporal order. Based on this approach, we propose some tools for analysing the non-random nature of mobility patterns in general.Comment: 14 pages, 4 figures, improved discussio
    corecore