3,169 research outputs found

    Breaking boundaries:Charge density waves, quantum measurement, and black holes in theoretical physics

    Get PDF
    This thesis, titled “Breaking Boundaries” is a journey through three topics united by the theme of boundaries in physics. First, the journey begins with an investigation into charge density waves (CDWs) and their nearly commensurate phase, focusing on the materials 2H-TaSe2 and 1T-TaS2. An extensive treatment of Ginzburg-Landau theory is covered with an extension into truly two-dimensional systems. This extension is used to study spiral patches of commensurate charge density waves observed in experiment. The research leads to a novel perspective on CDW behaviour with the existence of a spiral CDW phase in a range of materials. Secondly, transitioning to the quantum realm, the thesis addresses the quantum measurement problem, emphasizing the constraints any valid theory must possess. It critiques existing models, demonstrates the non-linearity of objective collapse theories, and proposes a minimal model that bridges quantum mechanics and classical physics. Thirdly, the thesis delves into black holes and specifically the phenomena of thermal radiation due to a horizon. First, we explore analogue models that mimic the thermal spectrum near a black hole horizon, to pave the way to experimental realization. Then we focus on the region far away from a black hole horizon and challenge the notion of remnant radiation at this position. With a theoretical toy model, we study the regime and find a non-evaporating black hole. This questions the validity of standard Hawking radiation calculations.In conclusion, the thesis navigates through the boundaries of material behaviours, the quantum-classical divide, and the enigmatic nature of black holes. It highlights the blurring and breaking of boundaries in physics, offering new perspectives and promising avenues for future discoveries

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Direct measurement of coating thermal noise in the AEI 10m prototype

    Get PDF
    A thermal noise interferometer for the characterization of thermal noise in high reflectivity mirrors has been commissioned and first direct measurements of coating thermal noise have been performed. This serves as an important step in the improvement of current and future gravitational wave detectors

    Developing Tools For Probing Stellar Interiors With Asteroseismology

    Get PDF
    Asteroseismology is the study of stellar oscillations. Recent space missions, such as CoRoT, Kepler, and TESS, are rapidly revolutionising the field by collecting vast amounts of data. These data have enabled accurate characterisation of stellar oscillations for a wide range of stars, leading to improved understanding of stellar physics and knowledge of Galactic and planetary populations. This thesis builds on existing tools and develops new techniques to advance our understanding of stars using their oscillations. Firstly, we investigate 36 subgiants observed by Kepler, measuring their oscillation parameters and extracting their frequencies, amplitudes and linewidths. They are used as modelling input to derive accurate stellar parameters. Secondly, we measure the core and envelope rotation rates for these subgiants, and study them as a function of stellar properties. We find near solid-body rotation in early subgiants and differential rotation in later stages. Thirdly, we evaluate the intrinsic scatter of the asteroseismic scaling relations, using the sharpness of population-level features that are naturally formed by stars. We constrain the intrinsic scatter to be a few percent. Fourthly, we propose a new method to correct the stellar surface effect, which involves prescribing the surface effect as a function of stellar surface parameters. This method reduces the scatter of model-derived stellar properties and provides a revised correction for the Dnu scaling relation. Fifthly, we test the numax scaling relation by comparing observed numax with model-inferred scaling numax constrained by individual frequencies. We conclude no noticeable deviation of the numax scaling relation and a lack of metallicity dependency. Lastly, we construct a mass-radius diagram for red clump stars, leading to the discovery of two new types of post-mass-transfer stars. The new finding offers exciting opportunities to study binary evolution using asteroseismology

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Unstable Periodic Orbits: a language to interpret the complexity of chaotic systems

    Get PDF
    Unstable periodic orbits (UPOs), exact periodic solutions of the evolution equation, offer a very powerful framework for studying chaotic dynamical systems, as they allow one to dissect their dynamical structure. UPOs can be considered the skeleton of chaotic dynamics, its essential building blocks. In fact, it is possible to prove that in a chaotic system, UPOs are dense in the attractor, meaning that it is always possible to find a UPO arbitrarily near any chaotic trajectory. We can thus think of the chaotic trajectory as being approximated by different UPOs as it evolves in time, jumping from one UPO to another as a result of their instability. In this thesis we provide a contribution towards the use of UPOs as a tool to understand and distill the dynamical structure of chaotic dynamical systems. We will focus on two models, characterised by different properties, the Lorenz-63 and Lorenz-96 model. The process of approximation of a chaotic trajectory in terms of UPOs will play a central role in our investigation. In fact, we will use this tool to explore the properties of the attractor of the system under the lens of its UPOs. In the first part of the thesis we consider the Lorenz-63 model with the classic parameters’ value. We investigate how a chaotic trajectory can be approximated using a complete set of UPOs up to symbolic dynamics’ period 14. At each instant in time, we rank the UPOs according to their proximity to the position of the orbit in the phase space. We study this process from two different perspectives. First, we find that longer period UPOs overwhelmingly provide the best local approximation to the trajectory. Second, we construct a finite-state Markov chain by studying the scattering of the trajectory between the neighbourhood of the various UPOs. Each UPO and its neighbourhood are taken as a possible state of the system. Through the analysis of the subdominant eigenvectors of the corresponding stochastic matrix we provide a different interpretation of the mixing processes occurring in the system by taking advantage of the concept of quasi-invariant sets. In the second part of the thesis we provide an extensive numerical investigation of the variability of the dynamical properties across the attractor of the much studied Lorenz ’96 dynamical system. By combining the Lyapunov analysis of the tangent space with the study of the shadowing of the chaotic trajectory performed by a very large set of unstable periodic orbits, we show that the observed variability in the number of unstable dimensions, which shows a serious breakdown of hyperbolicity, is associated with the presence of a substantial number of finite-time Lyapunov exponents that fluctuate about zero also when very long averaging times are considered

    Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice

    Full text link
    As one of the most fundamental concepts in transportation science, Wardrop equilibrium (WE) has always had a relatively weak behavioral underpinning. To strengthen this foundation, one must reckon with bounded rationality in human decision-making processes, such as the lack of accurate information, limited computing power, and sub-optimal choices. This retreat from behavioral perfectionism in the literature, however, was typically accompanied by a conceptual modification of WE. Here we show that giving up perfect rationality need not force a departure from WE. On the contrary, WE can be reached with global stability in a routing game played by boundedly rational travelers. We achieve this result by developing a day-to-day (DTD) dynamical model that mimics how travelers gradually adjust their route valuations, hence choice probabilities, based on past experiences. Our model, called cumulative logit (CULO), resembles the classical DTD models but makes a crucial change: whereas the classical models assume routes are valued based on the cost averaged over historical data, ours values the routes based on the cost accumulated. To describe route choice behaviors, the CULO model only uses two parameters, one accounting for the rate at which the future route cost is discounted in the valuation relative to the past ones and the other describing the sensitivity of route choice probabilities to valuation differences. We prove that the CULO model always converges to WE, regardless of the initial point, as long as the behavioral parameters satisfy certain mild conditions. Our theory thus upholds WE's role as a benchmark in transportation systems analysis. It also resolves the theoretical challenge posed by Harsanyi's instability problem by explaining why equally good routes at WE are selected with different probabilities

    Superconducting Circuit Architectures Based on Waveguide Quantum Electrodynamics

    Get PDF
    Quantum science and technology provides new possibilities in processing information, simulating novel materials, and answering fundamental questions beyond the reach of classical methods. Realizing these goals relies on the advancement of physical platforms, among which superconducting circuits have been one of the leading candidates offering complete control and read-out over individual qubits and the potential to scale up. However, most circuit-based multi-qubit architectures only include nearest-neighbor (NN) coupling between qubits, which limits the efficient implementation of low-overhead quantum error correction and access to a wide range of physical models using analog quantum simulation. This challenge can be overcome by introducing non-local degrees of freedom. For example, photons in a shared channel between qubits can mediate long-range qubit-qubit coupling arising from light-matter interaction. In addition, constructing a scalable architecture requires this channel to be intrinsically extensible, in which case a one-dimensional waveguide is an ideal structure providing the extensible direction as well as strong light-matter interaction. In this thesis, we explore superconducting circuit architectures based on light-matter interactions in waveguide quantum electrodynamics (QED) systems. These architectures in return allow us to study light-matter interaction, demonstrating strong coupling in the open environment of a waveguide by employing sub-radiant states resulting from collective effects. We further engineer the waveguide dispersion to enter the topological photonics regime, exploring interactions between qubits that are mediated by photons with topological properties. Finally, towards the goals of quantum information processing and simulation, we settle into a multi-qubit architecture where the photon-mediated interaction between qubits exhibits tunable range and strength. We use this multi-qubit architecture to construct a lattice with tunable connectivity for strongly interacting microwave photons, synthesizing a quantum many-body model to explore chaotic dynamics. The architectures in this thesis introduce scalable beyond-NN coupling between superconducting qubits, opening the door to the exploration of many-body physics with long-range coupling and efficient implementation of quantum information processing protocols.</p

    Markov field models of molecular kinetics

    Get PDF
    Computer simulations such as molecular dynamics (MD) provide a possible means to understand protein dynamics and mechanisms on an atomistic scale. The resulting simulation data can be analyzed with Markov state models (MSMs), yielding a quantitative kinetic model that, e.g., encodes state populations and transition rates. However, the larger an investigated system, the more data is required to estimate a valid kinetic model. In this work, we show that this scaling problem can be escaped when decomposing a system into smaller ones, leveraging weak couplings between local domains. Our approach, termed independent Markov decomposition (IMD), is a first-order approximation neglecting couplings, i.e., it represents a decomposition of the underlying global dynamics into a set of independent local ones. We demonstrate that for truly independent systems, IMD can reduce the sampling by three orders of magnitude. IMD is applied to two biomolecular systems. First, synaptotagmin-1 is analyzed, a rapid calcium switch from the neurotransmitter release machinery. Within its C2A domain, local conformational switches are identified and modeled with independent MSMs, shedding light on the mechanism of its calcium-mediated activation. Second, the catalytic site of the serine protease TMPRSS2 is analyzed with a local drug-binding model. Equilibrium populations of different drug-binding modes are derived for three inhibitors, mirroring experimentally determined drug efficiencies. IMD is subsequently extended to an end-to-end deep learning framework called iVAMPnets, which learns a domain decomposition from simulation data and simultaneously models the kinetics in the local domains. We finally classify IMD and iVAMPnets as Markov field models (MFM), which we define as a class of models that describe dynamics by decomposing systems into local domains. Overall, this thesis introduces a local approach to Markov modeling that enables to quantitatively assess the kinetics of large macromolecular complexes, opening up possibilities to tackle current and future computational molecular biology questions
    corecore