8,591 research outputs found

    A moving target velocity estimation method based on the MC-MASA SAR mode

    Get PDF
    Imaging position shift based on the multiple azimuth squint angles (MASA) mode is effective for target azimuth velocity estimation, whereas accuracy is low when target range velocity is high. In this paper, the estimation problem for both target azimuth and range velocities is considered based on the multi-channels MASA (MC-MASA) mode. Firstly, the acquisition geometry of MC-MASA mode and Doppler characteristics of a moving target are analyzed in detail, especially in squint mode. Then, for better moving target estimation, the stationary background clutter is removed using the displacement phase center antenna (DPCA) technique, and the failure in range velocity estimation with sequential SAR images is also discussed. Furthermore, a modified along-track interferometry (ATI) is proposed to preliminarily reconstruct the azimuth-and-range velocity map based on the MC-MASA mode. Since the velocity estimation accuracy is dependent on squint angle and signal-to-clutter ratio (SCR), the circumstances are divided into three cases with different iteration estimation strategies, which could expand the scene application scope of velocity estimation and achieve a high estimation accuracy along both azimuth and range directions. Finally, the performance of the proposed method is demonstrated by experimental results

    A Large Along-Track Baseline Approach for Ground Moving Target Indication Using TanDEM-X

    Get PDF
    In the paper a new method for ground moving target indication (GMTI) using two satellites (i.e. the TerraSAR-X and the TanDEM-X satellite) together is presented. The along-track baseline between the satellites is chosen to be in the order of several kilometres, so that each satellite observes the same moving vehicles at different times in the order of one to several seconds. The proposed method allows the estimation of the ground velocity of the moving targets as well as the estimation of the broadside positions without the need of complex bistatic processing techniques

    A Sliding Mode Multimodel Control for a Sensorless Photovoltaic System

    Full text link
    In this work we will talk about a new control test using the sliding mode control with a nonlinear sliding mode observer, which are very solicited in tracking problems, for a sensorless photovoltaic panel. In this case, the panel system will has as a set point the sun position at every second during the day for a period of five years; then the tracker, using sliding mode multimodel controller and a sliding mode observer, will track these positions to make the sunrays orthogonal to the photovoltaic cell that produces more energy. After sunset, the tracker goes back to the initial position (which of sunrise). Experimental measurements show that this autonomic dual axis Sun Tracker increases the power production by over 40%

    Moving Target Azimuth Velocity Estimation for the MASA Mode Based on Sequential SAR Images

    Get PDF
    A novel azimuth velocity estimation method is proposed based on the multiple azimuth squint angles (MASA) imaging mode, acquiring sequential synthetic aperture radar images with different squint angles and time lags. The MASA mode acquisition geometry is given first, and the effect of target motion on azimuth offset and slant range offset is discussed in detail. Then, the azimuth velocity estimation accuracy is analyzed, considering the errors caused by registration, defocusing, and range velocity. Moreover, the interaction between target azimuth velocity and range velocity is studied for a better understanding of the azimuth velocity estimation error caused by the range velocity. With the proposed error compensation step, the new method can achieve a very high accuracy in azimuth velocity estimation, as verified by experimental results based on both simulated data and the TerraSAR-X data

    Design study for LANDSAT-D attitude control system

    Get PDF
    The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse

    Techniques for ground moving target detection and velocity estimation with multi-channel Synthetic Aperture Radars (SAR)

    Get PDF
    The main objective of this thesis is the study of a relatively new detection and velocity estimation technique for moving targets in sea scenarios. A Constant False Alarm (CFAR) detector based on fractional Fourier transform and on Displaced Phase Center Antenna (DPCA) has been implemented. For velocity estimation Along-Track interferometry (ATI) and, again, the fractional Fourier transform are used. Additional virtual channels are also studied in addition to standar 2 real channel receiving system. The aim of the thesis is to understand through simulations if such a technique provides improved velocity estimation combined with the detection based on the fractional Fourier transform. L'obiettivo principale di questa tesi è lo studio e l'implementazione nel simulatore della Università Politecnica della Catalogna di una tecnica relativamente nuova di identificazione di oggetti in movimento sulla superficie marina e la stima della velocità. E' stato implementato un identificatore a falso allarme costante basato nella trasformata frazionaria di Fourier. Per la stima della velocità si sono utilizzati l' ATI (Along Track Interferometry) e nuovamente la trasformata frazionaria di Fourier. Si sono anche implementati dei canali virtuali addizionali rispetto ai soli 2 standard canali reali in ricezione. Lo scopo della tesi è di capire attraverso le simulazioni se queste tecniche forniscono una migliore stima della velocità rispetto ad altre tecniche più classich
    corecore