28,810 research outputs found

    Comparison of Different Methods for Nonlinear Diffusive Shock Acceleration

    Full text link
    We provide a both qualitative and quantitative comparison among different approaches aimed to solve the problem of non-linear diffusive acceleration of particles at shocks. In particular, we show that state-of-the-art models (numerical, Monte Carlo and semi-analytical), even if based on different physical assumptions and implementations, for typical environmental parameters lead to very consistent results in terms of shock hydrodynamics, cosmic ray spectrum and also escaping flux spectrum and anisotropy. Strong points and limits of each approach are also discussed, as a function of the problem one wants to study.Comment: 26 pages, 4 figures, published version (references updated

    Optothermal microfluidics

    Get PDF

    Exergy Optimization of a Moving Bed Heat Exchanger

    Get PDF
    The MBHE proposed can be analyzed as a crossflow heat exchanger where one of the phases is a moving granular medium. In the present work the exergy analysis of the MBHE is carried out over operation data of the exchanger obtained in two ways: a numerical simulation of the stationary problem and a simplified analysis. The numerical simulation is carried over the two steady state energy equations (fluid and solid), involving (for the fluid) the convection heat transfer to the solid and the diffusion term in the flow direction, and (for the solid) only the convection heat transfer to the fluid. The simplified analysis followed the well-known e-NTU method, taking the equipment as a crossflow heat exchanger with both fluids unmixed.Publicad

    Self-consistent modeling of laminar electrohydrodynamic plumes from ultrasharp needles in cyclohexane

    Get PDF
    This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. Physics of Fluids 12, 2809 (2000) when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a highdensity charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the Finite Element Method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage (IV) characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.Ministerio de EconomĂ­a y Competitividad FIS2014-54539-P
    • 

    corecore