4,190 research outputs found

    Genetic Exponentially Fitted Method for Solving Multi-dimensional Drift-diffusion Equations

    Full text link
    A general approach was proposed in this article to develop high-order exponentially fitted basis functions for finite element approximations of multi-dimensional drift-diffusion equations for modeling biomolecular electrodiffusion processes. Such methods are highly desirable for achieving numerical stability and efficiency. We found that by utilizing the one-one correspondence between continuous piecewise polynomial space of degree k+1k+1 and the divergence-free vector space of degree kk, one can construct high-order 2-D exponentially fitted basis functions that are strictly interpolative at a selected node set but are discontinuous on edges in general, spanning nonconforming finite element spaces. First order convergence was proved for the methods constructed from divergence-free Raviart-Thomas space RT00RT_0^0 at two different node set

    Progress in mixed Eulerian-Lagrangian finite element simulation of forming processes

    Get PDF
    A review is given of a mixed Eulerian-Lagrangian finite element method for simulation of forming processes. This method permits incremental adaptation of nodal point locations independently from the actual material displacements. Hence numerical difficulties due to large element distortions, as may occur when the updated Lagrange method is applied, can be avoided. Movement of (free) surfaces can be taken into account by adapting nodal surface points in a way that they remain on the surface. Hardening and other deformation path dependent properties are determined by incremental treatment of convective terms. A local and a weighed global smoothing procedure is introduced in order to avoid numerical instabilities and numerical diffusion. Prediction of contact phenomena such as gap openning and/or closing and sliding with friction is accomplished by a special contact element. The method is demonstrated by simulations of an upsetting process and a wire drawing process

    Coupling the fictitious domain and sharp interface methods for the simulation of convective mass transfer around reactive particles: towards a reactive Sherwood number correlation for dilute systems

    Get PDF
    We suggest a reactive Sherwood number model for convective mass transfer around reactive particles in a dilute regime. The model is constructed with a simple external-internal coupling and is validated with Particle-Resolved Simulation (PRS). The PRS of reactive particle-fluid systems requires numerical methods able to handle efficiently sharp gradients of concentration and potential discontinuities of gradient concentrations at the fluid-particle interface. To simulate mass transfer from reactive catalyst beads immersed in a fluid flow, we coupled the Sharp Interface Method (SIM) to a Distributed Lagrange Multiplier/Fictious Domain (DLM/FD) two-phase flow solver. We evaluate the accuracy of our numerical method by comparison to analytic solutions and to generic test cases fully resolved by boundary fitted simulations. A previous theoretical model that couples the internal diffusion-reaction problem with the external advection-diffusion mass transfer in the fluid phase is extended to the configuration of three aligned spherical particles representative of a dilute particle-laden flow. Predictions of surface concentration, mass transfer coefficient and chemical effectiveness factor of catalyst particles are validated by DLM-FD/SIM simulations. We show that the model captures properly the effect of an internal first order chemical reaction on the overall respective reactive Sherwood number of each sphere depending on their relative positions. The proposed correlation for the reactive Sherwood number is based on an existing non-reactive Sherwood number correlation. The model can be later used in Euler/Lagrange or Euler/ Euler modelling of dilute reactive particle-laden flows

    Strong and auxiliary forms of the semi-Lagrangian method for incompressible flows

    No full text
    We present a review of the semi-Lagrangian method for advection-diusion and incompressible Navier-Stokes equations discretized with high-order methods. In particular, we compare the strong form where the departure points are computed directly via backwards integration with the auxiliary form where an auxiliary advection equation is solved instead; the latter is also referred to as Operator Integration Factor Splitting (OIFS) scheme. For intermediate size of time steps the auxiliary form is preferrable but for large time steps only the strong form is stable
    • …
    corecore