5,529 research outputs found

    A new transfer-matrix algorithm for exact enumerations: Self-avoiding polygons on the square lattice

    Full text link
    We present a new and more efficient implementation of transfer-matrix methods for exact enumerations of lattice objects. The new method is illustrated by an application to the enumeration of self-avoiding polygons on the square lattice. A detailed comparison with the previous best algorithm shows significant improvement in the running time of the algorithm. The new algorithm is used to extend the enumeration of polygons to length 130 from the previous record of 110.Comment: 17 pages, 8 figures, IoP style file

    BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices

    Full text link
    In this paper the elementary moves of the BFACF-algorithm for lattice polygons are generalised to elementary moves of BFACF-style algorithms for lattice polygons in the body-centred (BCC) and face-centred (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice. Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices

    Lattice Universes in 2+1-dimensional gravity

    Full text link
    Lattice universes are spatially closed space-times of spherical topology in the large, containing masses or black holes arranged in the symmetry of a regular polygon or polytope. Exact solutions for such spacetimes are found in 2+1 dimensions for Einstein gravity with a non-positive cosmological constant. By means of a mapping that preserves the essential nature of geodesics we establish analogies between the flat and the negative curvature cases. This map also allows treatment of point particles and black holes on a similar footing.Comment: 14 pages 7 figures, to appear in Festschrift for Vince Moncrief (CQG

    Periodic boundary conditions on the pseudosphere

    Full text link
    We provide a framework to build periodic boundary conditions on the pseudosphere (or hyperbolic plane), the infinite two-dimensional Riemannian space of constant negative curvature. Starting from the common case of periodic boundary conditions in the Euclidean plane, we introduce all the needed mathematical notions and sketch a classification of periodic boundary conditions on the hyperbolic plane. We stress the possible applications in statistical mechanics for studying the bulk behavior of physical systems and we illustrate how to implement such periodic boundary conditions in two examples, the dynamics of particles on the pseudosphere and the study of classical spins on hyperbolic lattices.Comment: 30 pages, minor corrections, accepted to J. Phys.

    Commuting-projector Hamiltonians for chiral topological phases built from parafermions

    Get PDF
    We introduce a family of commuting-projector Hamiltonians whose degrees of freedom involve Z3\mathbb{Z}_{3} parafermion zero modes residing in a parent fractional-quantum-Hall fluid. The two simplest models in this family emerge from dressing Ising-paramagnet and toric-code spin models with parafermions; we study their edge properties, anyonic excitations, and ground-state degeneracy. We show that the first model realizes a symmetry-enriched topological phase (SET) for which Z2\mathbb{Z}_2 spin-flip symmetry from the Ising paramagnet permutes the anyons. Interestingly, the interface between this SET and the parent quantum-Hall phase realizes symmetry-enforced Z3\mathbb{Z}_3 parafermion criticality with no fine-tuning required. The second model exhibits a non-Abelian phase that is consistent with SU(2)4\text{SU}(2)_{4} topological order, and can be accessed by gauging the Z2\mathbb{Z}_{2} symmetry in the SET. Employing Levin-Wen string-net models with Z2\mathbb{Z}_{2}-graded structure, we generalize this picture to construct a large class of commuting-projector models for Z2\mathbb{Z}_{2} SETs and non-Abelian topological orders exhibiting the same relation. Our construction provides the first commuting-projector-Hamiltonian realization of chiral bosonic non-Abelian topological order.Comment: 29+18 pages, 25 figure

    Implicitization of rational surfaces using toric varieties

    Get PDF
    A parameterized surface can be represented as a projection from a certain toric surface. This generalizes the classical homogeneous and bihomogeneous parameterizations. We extend to the toric case two methods for computing the implicit equation of such a rational parameterized surface. The first approach uses resultant matrices and gives an exact determinantal formula for the implicit equation if the parameterization has no base points. In the case the base points are isolated local complete intersections, we show that the implicit equation can still be recovered by computing any non-zero maximal minor of this matrix. The second method is the toric extension of the method of moving surfaces, and involves finding linear and quadratic relations (syzygies) among the input polynomials. When there are no base points, we show that these can be put together into a square matrix whose determinant is the implicit equation. Its extension to the case where there are base points is also explored.Comment: 28 pages, 1 figure. Numerous major revisions. New proof of method of moving surfaces. Paper accepted and to appear in Journal of Algebr

    Moduli of Tropical Plane Curves

    Get PDF
    We study the moduli space of metric graphs that arise from tropical plane curves. There are far fewer such graphs than tropicalizations of classical plane curves. For fixed genus gg, our moduli space is a stacky fan whose cones are indexed by regular unimodular triangulations of Newton polygons with gg interior lattice points. It has dimension 2g+12g+1 unless g≤3g \leq 3 or g=7g = 7. We compute these spaces explicitly for g≤5g \leq 5.Comment: 31 pages, 25 figure
    • …
    corecore