2,704 research outputs found

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Autonomous Unmanned Aerial Vehicle Navigation using Reinforcement Learning: A Systematic Review

    Get PDF
    There is an increasing demand for using Unmanned Aerial Vehicle (UAV), known as drones, in different applications such as packages delivery, traffic monitoring, search and rescue operations, and military combat engagements. In all of these applications, the UAV is used to navigate the environment autonomously --- without human interaction, perform specific tasks and avoid obstacles. Autonomous UAV navigation is commonly accomplished using Reinforcement Learning (RL), where agents act as experts in a domain to navigate the environment while avoiding obstacles. Understanding the navigation environment and algorithmic limitations plays an essential role in choosing the appropriate RL algorithm to solve the navigation problem effectively. Consequently, this study first identifies the main UAV navigation tasks and discusses navigation frameworks and simulation software. Next, RL algorithms are classified and discussed based on the environment, algorithm characteristics, abilities, and applications in different UAV navigation problems, which will help the practitioners and researchers select the appropriate RL algorithms for their UAV navigation use cases. Moreover, identified gaps and opportunities will drive UAV navigation research

    Decentralized Autonomous Navigation Strategies for Multi-Robot Search and Rescue

    Full text link
    In this report, we try to improve the performance of existing approaches for search operations in multi-robot context. We propose three novel algorithms that are using a triangular grid pattern, i.e., robots certainly go through the vertices of a triangular grid during the search procedure. The main advantage of using a triangular grid pattern is that it is asymptotically optimal in terms of the minimum number of robots required for the complete coverage of an arbitrary bounded area. We use a new topological map which is made and shared by robots during the search operation. We consider an area that is unknown to the robots a priori with an arbitrary shape, containing some obstacles. Unlike many current heuristic algorithms, we give mathematically proofs of convergence of the algorithms. The computer simulation results for the proposed algorithms are presented using a simulator of real robots and environment. We evaluate the performance of the algorithms via experiments with real robots. We compare the performance of our own algorithms with three existing algorithms from other researchers. The results demonstrate the merits of our proposed solution. A further study on formation building with obstacle avoidance for a team of mobile robots is presented in this report. We propose a decentralized formation building with obstacle avoidance algorithm for a group of mobile robots to move in a defined geometric configuration. Furthermore, we consider a more complicated formation problem with a group of anonymous robots; these robots are not aware of their position in the final configuration and need to reach a consensus during the formation process. We propose a randomized algorithm for the anonymous robots that achieves the convergence to a desired configuration with probability 1. We also propose a novel obstacle avoidance rule, used in the formation building algorithm.Comment: arXiv admin note: substantial text overlap with arXiv:1402.5188 by other author

    AUTONOMOUS POWER DISTRIBUTION SYSTEMS

    Get PDF
    Using robotic systems for many missions that require power distribution can decrease the need for human intervention in such missions significantly. For accomplishing this capability a robotic system capable of autonomous navigation, power systems adaptation, and establishing physical connection needs to be developed. This thesis presents developed path planning and navigation algorithms for an autonomous ground power distribution system. In this work, a survey on existing path planning methods along with two developed algorithms by author is presented. One of these algorithms is a simple path planner suitable for implementation on lab-size platforms. A navigation hierarchy is developed for experimental validation of the path planner and proof of concept for autonomous ground power distribution system in lab environment. The second algorithm is a robust path planner developed for real-size implementation based on lessons learned from lab-size experiments. The simulation results illustrates that the algorithm is efficient and reliable in unknown environments. Future plans for developing intelligent power electronics and integrating them with robotic systems is presented. The ultimate goal is to create a power distribution system capable of regulating power flow at a desired voltage and frequency adaptable to load demands

    Event-triggered coordination for formation tracking control in constrained space with limited communication

    Get PDF
    In this paper, the formation tracking control is studied for a multi-agent system (MAS) with communication limitations. The objective is to control a group of agents to track a desired trajectory while maintaining a given formation in non omniscient constrained space. The role switching triggered by the detection of unexpected spatial constraints facilitates efficiency of event-triggered control in communication bandwidth, energy consumption and processor usage. A coordination mechanism is proposed based on a novel role ‘coordinator’ to indirectly spread environmental information among the whole communication network and form a feedback link from followers to the leader to guarantee the formation keeping. A formation scaling factor is introduced to scale up or scale down the given formation size in the case that the region is impassable for MAS with the original formation size. Controllers for the leader and followers are designed and the adaptation law is developed for the formation scaling factor. The conditions for asymptotic stability of MAS are discussed based on the Lyapunov theory. Simulation results are presented to illustrate the performance of proposed approaches
    • …
    corecore