21,377 research outputs found

    Moving Mesh Methods for Problems with Blow-Up

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1137/S1064827594272025.In this paper we consider the numerical solution of PDEs with blow-up for which scaling invariance plays a natural role in describing the underlying solution structures. It is a challenging numerical problem to capture the qualitative behaviour in the blow-up region, and the use of nonuniform meshes is essential. We consider moving mesh methods for which the mesh is determined using so-called moving mesh partial differential equations (MMPDEs).Specifically, the underlying PDE and the MMPDE are solved for the blow-up solution and the computational mesh simultaneously. Motivated by the desire for the MMPDE to preserve the scaling invariance of the underlying problem, we study the effect of different choices of MMPDEs and monitor functions. It is shown that for suitable ones the MMPDE solution evolves towards a. (moving) mesh which close to the blow-up point automatically places the mesh points in such a manner that the ignition kernel, which is well known to be a natural coordinate in describing the behaviour of blow-up, approaches a constant as t→Tt \to T (the blow-up time). Several numerical examples are given to verify the theory for these MMPDE methods and to illustrate their efficacy

    A moving mesh method with variable relaxation time

    Full text link
    We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in order to regularize the mesh appropriately throughout a computation. We focus on singular problems involving self-similar blow-up to demonstrate the advantages of using a variable relaxation ime over a fixed one in terms of accuracy, stability and efficiency.Comment: 21 page

    Numerical investigations of traveling singular sources problems via moving mesh method

    Full text link
    This paper studies the numerical solution of traveling singular sources problems. In such problems, a big challenge is the sources move with different speeds, which are described by some ordinary differential equations. A predictor-corrector algorithm is presented to simulate the position of singular sources. Then a moving mesh method in conjunction with domain decomposition is derived for the underlying PDE. According to the positions of the sources, the whole domain is splitted into several subdomains, where moving mesh equations are solved respectively. On the resulting mesh, the computation of jump [uË™][\dot{u}] is avoided and the discretization of the underlying PDE is reduced into only two cases. In addition, the new method has a desired second-order of the spatial convergence. Numerical examples are presented to illustrate the convergence rates and the efficiency of the method. Blow-up phenomenon is also investigated for various motions of the sources

    Structures and waves in a nonlinear heat-conducting medium

    Full text link
    The paper is an overview of the main contributions of a Bulgarian team of researchers to the problem of finding the possible structures and waves in the open nonlinear heat conducting medium, described by a reaction-diffusion equation. Being posed and actively worked out by the Russian school of A. A. Samarskii and S.P. Kurdyumov since the seventies of the last century, this problem still contains open and challenging questions.Comment: 23 pages, 13 figures, the final publication will appear in Springer Proceedings in Mathematics and Statistics, Numerical Methods for PDEs: Theory, Algorithms and their Application

    A moving mesh method for one-dimensional hyperbolic conservation laws

    Get PDF
    We develop an adaptive method for solving one-dimensional systems of hyperbolic conservation laws that employs a high resolution Godunov-type scheme for the physical equations, in conjunction with a moving mesh PDE governing the motion of the spatial grid points. Many other moving mesh methods developed to solve hyperbolic problems use a fully implicit discretization for the coupled solution-mesh equations, and so suffer from a significant degree of numerical stiffness. We employ a semi-implicit approach that couples the moving mesh equation to an efficient, explicit solver for the physical PDE, with the resulting scheme behaving in practice as a two-step predictor-corrector method. In comparison with computations on a fixed, uniform mesh, our method exhibits more accurate resolution of discontinuities for a similar level of computational work

    Symmetry-preserving discrete schemes for some heat transfer equations

    Full text link
    Lie group analysis of differential equations is a generally recognized method, which provides invariant solutions, integrability, conservation laws etc. In this paper we present three characteristic examples of the construction of invariant difference equations and meshes, where the original continuous symmetries are preserved in discrete models. Conservation of symmetries in difference modeling helps to retain qualitative properties of the differential equations in their difference counterparts.Comment: 21 pages, 4 ps figure

    Non-self-similar blow-up in the heat flow for harmonic maps in higher dimensions

    Full text link
    We analyze the finite-time blow-up of solutions of the heat flow for kk-corotational maps Rd→Sd\mathbb R^d\to S^d. For each dimension d>2+k(2+22)d>2+k(2+2\sqrt{2}) we construct a countable family of blow-up solutions via a method of matched asymptotics by glueing a re-scaled harmonic map to the singular self-similar solution: the equatorial map. We find that the blow-up rates of the constructed solutions are closely related to the eigenvalues of the self-similar solution. In the case of 11-corotational maps our solutions are stable and represent the generic blow-up.Comment: 26 pages, 5 figure
    • …
    corecore