3,228 research outputs found

    A Cluster-indexing CBR Model for Collaborative Filtering Recommendation

    Get PDF

    Building a User-Based Recommendation System Using a Model-Based Collaborative Filtering Approach

    Get PDF
    The modern day internet faces a very famous problem called information overload. Where the amount of information is huge and the need for personalized results to match ones preferences for ease of access to other information like it. This is especially a problem in the e-commerce and streaming industries where the amount of items available is massive and users need a way to surf through results quickly and efficiently to find the exact items they are looking for and possibly look at similar recommendations. Modern day recommendation engines use user-item data to find items an active user may like based on other users with similar preferences and provide recommendations. This paper looks at a model based approach, specifically collaborative filtering, to providing accurate recommendations. The model will be made based on normal predictor, singular vector decomposition, k-nearest neighbour, and slope one and the performance and accuracy of the models will be compared against each other to see the comparison between them

    Prescription Based Recommender System for Diabetic Patients Using Efficient Map Reduce

    Get PDF
    Healthcare sector has been deprived of leveraging knowledge gained through data insights, due to manual processes and legacy record-keeping methods. Outdated methods for maintaining healthcare records have not been proven sufficient for treating chronic diseases like diabetes. Data analysis methods such as Recommendation System (RS) can serve as a boon for treating diabetes. RS leverages predictive analysis and provides clinicians with information needed to determine the treatments to patients. Prescription-based Health Recommender System (HRS) is proposed in this paper which aids in recommending treatments by learning from the treatments prescribed to other patients diagnosed with diabetes. An Advanced Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering is also proposed to cluster the data for deriving recommendations by using winnowing algorithm as a similarity measure. A parallel processing of data is applied using map-reduce to increase the efficiency & scalability of clustering process for effective treatment of diabetes. This paper provides a good picture of how the Map Reduce can benefit in increasing the efficiency and scalability of the HRS using clustering

    Movie recommender systems: Concepts, methods, challenges, and future directions

    Get PDF
    Movie recommender systems are meant to give suggestions to the users based on the features they love the most. A highly performing movie recommendation will suggest movies that match the similarities with the highest degree of performance. This study conducts a systematic literature review on movie recommender systems. It highlights the filtering criteria in the recommender systems, algorithms implemented in movie recommender systems, the performance measurement criteria, the challenges in implementation, and recommendations for future research. Some of the most popular machine learning algorithms used in movie recommender systems such as K-means clustering, principal component analysis, and self-organizing maps with principal component analysis are discussed in detail. Special emphasis is given to research works performed using metaheuristic-based recommendation systems. The research aims to bring to light the advances made in developing the movie recommender systems, and what needs to be performed to reduce the current challenges in implementing the feasible solutions. The article will be helpful to researchers in the broad area of recommender systems as well as practicing data scientists involved in the implementation of such systems.Web of Science2213art. no. 490

    Map Based Visualization of Product Catalogs

    Get PDF
    Traditionally, recommender systems present recommendations in lists to the user. In content- and knowledge-based recommendation systems these list are often sorted on some notion of similarity with a query, ideal product specification, or sample product. However, a lot of information is lost in this way, since two even similar products can differ from the query on a completely different set of product characteristics. When using a two dimensional, that is, a map-based, representation of the recommendations, it is possible to retain this information. In the map we can then position recommendations that are similar to each other in the same area of the map. Both in science and industry an increasing number of two dimensional graphical interfaces have been introduced over the last years. However, some of them lack a sound scientific foundation, while other approaches are not applicable in a recommendation setting. In our chapter, we will describe a framework, which has a solid scientific foundation (using state-of-the-art statistical models) and is specifically designed to work with e-commerce product catalogs. Basis of the framework is the Product Catalog Map interface based on multidimensional scaling. Also, we show another type of interface based on nonlinear principal components analysis, which provides an easy way in constraining the space based on specific characteristic values. Then, we discuss some advanced issues. Firstly, we discuss how the product catalog interface can be adapted to better fit the users' notion of importance of attributes using click stream analysis. Secondly, we show an user interface that combines recommendation by proposing with the map based approach. Finally, we show how these methods can be applied to a real e-commerce product catalog of MP3-players

    Using K-means Clustering and Similarity Measure to Deal with Missing Rating in Collaborative Filtering Recommendation Systems

    Get PDF
    The Collaborative Filtering recommendation systems have been developed to address the information overload problem and personalize the content to the users for business and organizations. However, the Collaborative Filtering approach has its limitation of data sparsity and online scalability problems which result in low recommendation quality. In this thesis, a novel Collaborative Filtering approach is introduced using clustering and similarity technologies. The proposed method using K-means clustering to partition the entire dataset reduces the time complexity and improves the online scalability as well as the data density. Moreover, the similarity comparison method predicts and fills up the missing value in sparsity dataset to enhance the data density which boosts the recommendation quality. This thesis uses MovieLens dataset to investigate the proposed method, which yields amazing experimental outcome on a large sparsity data set that has a higher quality with lower time complexity than the traditional Collaborative Filtering approaches
    • …
    corecore