809 research outputs found

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Control Systems Approach to Balance Stabilization during Human Standing and Walking.

    Full text link
    Humans rely on cooperation from multiple sensorimotor processes to navigate a complex world. Poor function of one or more components can lead to reduced mobility or increased risk of falls, particularly with age. At present, quantification and characterization of poor postural control typically focus on single sensors rather than the ensemble and lack methods to consider the overall function of sensors, body dynamics, and actuators. To address this gap, I propose a controls framework based on simple mechanistic models to characterize and understand normative postural behavior. The models employ a minimal set of components that typify human behavior and make quantitative predictions to be tested against human data. This framework is applied to four topics relevant to daily living: sensory integration for standing balance, limb coordination for one-legged balance, momentum usage in sit-to-stand maneuvers, and the energetic trade-offs of foot-to-ground clearance while walking. First, I demonstrate that integration of information from multiple physiological sensors can be modeled by an optimal state estimator. I show how such a model can predict human responses to conflict between visual, vestibular, and other sensors and use visual perturbation experiments to test this model. Second, I demonstrate that feedback control can model multi-limb coordination strategies during one-legged balance. I empirically identify a control law from human subjects and investigate how reducing stance ankle function necessitates greater gains from other limbs. Third, I show the advantages of momentum usage in sit-to-stand maneuvers. Counter to many human movements, this strategy is not performed with energetic economy, requiring excess mechanical work. However, with optimization models, I demonstrate that momentum serves to balance effort between knee and hip. Fourth, I propose a cost model for preferred ground clearance during swing phase of walking. Walking with greater foot lift is costly, but inadvertent ground contact is also costly. Therefore the tradeoff between these costly measures, modulated by movement variability, can explain expected cost of ground clearance. These controls-based models demonstrate the mechanisms behind normative behavior and enables predictions under novel situations. Thus these models may serve as diagnostic tools to identify poor postural control or aid design of intervention procedures.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116654/1/amyrwu_1.pd

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Adaptive optimal output regulation for wheel-legged robot Ollie: A data-driven approach

    Get PDF
    The dynamics of a robot may vary during operation due to both internal and external factors, such as non-ideal motor characteristics and unmodeled loads, which would lead to control performance deterioration and even instability. In this paper, the adaptive optimal output regulation (AOOR)-based controller is designed for the wheel-legged robot Ollie to deal with the possible model uncertainties and disturbances in a data-driven approach. We test the AOOR-based controller by forcing the robot to stand still, which is a conventional index to judge the balance controller for two-wheel robots. By online training with small data, the resultant AOOR achieves the optimality of the control performance and stabilizes the robot within a small displacement in rich experiments with different working conditions. Finally, the robot further balances a rolling cylindrical bottle on its top with the balance control using the AOOR, but it fails with the initial controller. Experimental results demonstrate that the AOOR-based controller shows the effectiveness and high robustness with model uncertainties and external disturbances

    Active Training and Assistance Device for an Individually Adaptable Strength and Coordination Training

    Get PDF
    Das Altern der Weltbevölkerung, insbesondere in der westlichen Welt, stellt die Menschheit vor eine große Herausforderung. Zu erwarten sind erhebliche Auswirkungen auf den Gesundheitssektor, der im Hinblick auf eine steigende Anzahl von Menschen mit altersbedingtem körperlichem und kognitivem Abbau und dem damit erhöhten BedĂŒrfnis einer individuellen Versorgung vor einer großen Aufgabe steht. Insbesondere im letzten Jahrhundert wurden viele wissenschaftliche Anstrengungen unternommen, um Ursache und Entwicklung altersbedingter Erkrankungen, ihr Voranschreiten und mögliche Behandlungen, zu verstehen. Die derzeitigen Modelle zeigen, dass der entscheidende Faktor fĂŒr die Entwicklung solcher Krankheiten der Mangel an sensorischen und motorischen EinflĂŒssen ist, diese wiederum sind das Ergebnis verringerter MobilitĂ€t und immer weniger neuer Erfahrungen. Eine Vielzahl von Studien zeigt, dass erhöhte körperliche AktivitĂ€t einen positiven Effekt auf den Allgemeinzustand von Ă€lteren Erwachsenen mit leichten kognitiven BeeintrĂ€chtigungen und den Menschen in deren unmittelbarer Umgebung hat. Diese Arbeit zielt darauf ab, Ă€lteren Menschen die Möglichkeit zu bieten, eigenstĂ€ndig und sicher ein individuelles körperliches Training zu absolvieren. In den letzten zwei Jahrzehnten hat die Forschung im Bereich der robotischen Bewegungsassistenten, auch Smarte Rollatoren genannt, den Fokus auf die sensorische und kognitive UnterstĂŒtzung fĂŒr Ă€ltere und eingeschrĂ€nkte Personen gesetzt. Durch zahlreiche BemĂŒhungen entstand eine Vielzahl von AnsĂ€tzen zur Mensch-Rollator-Interaktion, alle mit dem Ziel, Bewegung und Navigation innerhalb der Umgebung zu unterstĂŒtzen. Aber trotz allem sind Trainingsmöglichkeiten zur motorischen Aktivierung mittels Smarter Rollatoren noch nicht erforscht. Im Gegensatz zu manchen Smarten Rollatoren, die den Fokus auf Rehabilitationsmöglichkeiten fĂŒr eine bereits fortgeschrittene Krankheit setzen, zielt diese Arbeit darauf ab, kognitive BeeintrĂ€chtigungen in einem frĂŒhen Stadium soweit wie möglich zu verlangsamen, damit die körperliche und mentale Fitness des Nutzers so lang wie möglich aufrechterhalten bleibt. Um die Idee eines solchen Trainings zu ĂŒberprĂŒfen, wurde ein Prototyp-GerĂ€t namens RoboTrainer-Prototyp entworfen, eine mobile Roboter-Plattform, die mit einem zusĂ€tzlichen Kraft-Momente-Sensor und einem Fahrradlenker als Eingabe-Schnittstelle ausgestattet wurde. Das Training beinhaltet vordefinierte Trainingspfade mit Markierungen am Boden, entlang derer der Nutzer das GerĂ€t navigieren soll. Der Prototyp benutzt eine Admittanzgleichung, um seine Geschwindigkeit anhand der Eingabe des Nutzers zu berechnen. Desweiteren leitet das GerĂ€t gezielte Regelungsaktionen bzw. VerhaltensĂ€nderungen des Roboters ein, um das Training herausfordernd zu gestalten. Die Pilotstudie, die mit zehn Ă€lteren Erwachsenen mit beginnender Demenz durchgefĂŒhrt wurde, zeigte eine signifikante Steigerung ihrer InteraktionsfĂ€higkeit mit diesem GerĂ€t. Sie bewies ebenfalls den Nutzen von Regelungsaktionen, um die KomplexitĂ€t des Trainings stĂ€ndig neu anzupassen. Obwohl diese Studie die DurchfĂŒhrbarkeit des Trainings zeigte, waren GrundflĂ€che und mechanische StabilitĂ€t des RoboTrainer-Prototyps suboptimal. Deswegen fokussiert sich der zweite Teil dieser Arbeit darauf, ein neues GerĂ€t zu entwerfen, um die Nachteile des Prototyps zu beheben. Neben einer erhöhten mechanischen StabilitĂ€t, ermöglicht der RoboTrainer v2 eine Anpassung seiner GrundflĂ€che. Dieses spezifische Merkmal der Smarten Rollatoren dient vor allem dazu, die UnterstĂŒtzungsflĂ€che fĂŒr den Benutzer anzupassen. Das ermöglicht einerseits ein agiles Training mit gesunden Personen und andererseits Rehabilitations-Szenarien bei Menschen, die körperliche UnterstĂŒtzung benötigen. Der Regelungsansatz fĂŒr den RoboTrainer v2 erweitert den Admittanzregler des Prototypen durch drei adaptive Strategien. Die erste ist die Anpassung der SensitivitĂ€t an die Eingabe des Nutzers, abhĂ€ngig von der StabilitĂ€t des Nutzer-Rollater-Systems, welche Schwankungen verhindert, die dann passieren können, wenn die HĂ€nde des Nutzers versteifen. Die zweite Anpassung beinhaltet eine neuartige nicht-lineare, geschwindigkeits-basierende Änderung der Admittanz-Parameter, um die Wendigkeit des Rollators zu erhöhen. Die dritte Anpassung erfolgt vor dem eigentlichen Training in einem Parametrierungsprozess, wo nutzereigene InteraktionskrĂ€fte gemessen werden, um individuelle Reglerkonstanten fein abzustimmen und zu berechnen. Die Regelungsaktionen sind VerhaltensĂ€nderungen des GerĂ€tes, die als Bausteine fĂŒr unterstĂŒtzende und herausfordernde Trainingseinheiten mit dem RoboTrainer dienen. Sie nutzen das virtuelle Kraft-Feld-Konzept, um die Bewegung des GerĂ€tes in der Trainingsumgebung zu beeinflussen. Die Bewegung des RoboTrainers wird in der Gesamtumgebung durch globale oder, in bestimmten Teilbereichen, durch rĂ€umliche Aktionen beeinflusst. Die Regelungsaktionen erhalten die Absicht des Nutzers aufrecht, in dem sie eine unabhĂ€ngige Admittanzdynamik implementieren, um deren Einfluss auf die Geschwindigkeit des RoboTrainers zu berechnen. Dies ermöglicht die entscheidende Trennung von ReglerzustĂ€nden, um wĂ€hrend des Trainings passive und sichere Interaktionen mit dem GerĂ€t zu erreichen. Die oben genannten BeitrĂ€ge wurden getrennt ausgewertet und in zwei Studien mit jeweils 22 bzw. 13 jungen, gesunden Erwachsenen untersucht. Diese Studien ermöglichen einen umfassenden Einblick in die ZusammenhĂ€nge zwischen unterschiedlichen FunktionalitĂ€ten und deren Einfluss auf die Nutzer. Sie bestĂ€tigen den gesamten Ansatz, sowie die gemachten Vermutungen im Hinblick auf die Gestaltung einzelner Teile dieser Arbeit. Die Einzelergebnisse dieser Arbeit resultieren in einem neuartigen ForschungsgerĂ€t fĂŒr physische Mensch-Roboter-Interaktionen wĂ€hrend des Trainings mit Erwachsenen. ZukĂŒnftige Forschungen mit dem RoboTrainer ebnen den Weg fĂŒr Smarte Rollatoren als Hilfe fĂŒr die Gesellschaft im Hinblick auf den bevorstehenden demographischen Wandel

    Advances in Robot Navigation

    Get PDF
    Robot navigation includes different interrelated activities such as perception - obtaining and interpreting sensory information; exploration - the strategy that guides the robot to select the next direction to go; mapping - the construction of a spatial representation by using the sensory information perceived; localization - the strategy to estimate the robot position within the spatial map; path planning - the strategy to find a path towards a goal location being optimal or not; and path execution, where motor actions are determined and adapted to environmental changes. This book integrates results from the research work of authors all over the world, addressing the abovementioned activities and analyzing the critical implications of dealing with dynamic environments. Different solutions providing adaptive navigation are taken from nature inspiration, and diverse applications are described in the context of an important field of study: social robotics

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field
    • 

    corecore