1,712 research outputs found

    Deliberately light interpersonal contact affects the control of head stability during walking in children and adolescents with cerebral palsy

    Get PDF
    Objective: To evaluate the potential of deliberately light interpersonal touch (IPT) for reducing excessive head and trunk sway during self-paced walking in children and adolescents with cerebral palsy (CP). Design: Quasi-experimental, proof-of-concept study with between-groups comparison. Setting: Ambulant care facility, community center. Participants: 26 individuals with CP (spastic and ataxic; GMFCS I-III; mean=9.8y; f=11, m=15) and in 39 typically developed (TD) children and adolescents (mean=10.0y; f=23, m=16). Interventions: IPT applied by a therapist to locations at the back and the head. Main Outcome Measures: As primary outcomes head and trunk sway during self-paced walking were assessed by inertial measurement units. Secondary outcomes were average step length and gait speed. Results: CP group: apex and occiput IPT reduced head velocity sway compared to thoracic IPT (both p=0.04) irrespective of individuals’ specific clinical symptoms. TD group: all testing conditions reduced head velocity sway compared to walking alone (all p≤0.03) as well as in apex and occiput IPT compared to paired walking (both p≤0.02). Conclusions: Deliberately light IPT at the apex of the head alters control of head sway in children and adolescents with CP. The effect of IPT varies as a function of contact location and acts differently in TD individuals

    Vibrotactile Sensory Augmentation and Machine Learning Based Approaches for Balance Rehabilitation

    Full text link
    Vestibular disorders and aging can negatively impact balance performance. Currently, the most effective approach for improving balance is exercise-based balance rehabilitation. Despite its effectiveness, balance rehabilitation does not always result in a full recovery of balance function. In this dissertation, vibrotactile sensory augmentation (SA) and machine learning (ML) were studied as approaches for further improving balance rehabilitation outcomes. Vibrotactile SA provides a form of haptic cues to complement and/or replace sensory information from the somatosensory, visual and vestibular sensory systems. Previous studies have shown that people can reduce their body sway when vibrotactile SA is provided; however, limited controlled studies have investigated the retention of balance improvements after training with SA has ceased. The primary aim of this research was to examine the effects of supervised balance rehabilitation with vibrotactile SA. Two studies were conducted among people with unilateral vestibular disorders and healthy older adults to explore the use of vibrotactile SA for therapeutic and preventative purposes, respectively. The study among people with unilateral vestibular disorders provided six weeks of supervised in-clinic balance training. The findings indicated that training with vibrotactile SA led to additional body sway reduction for balance exercises with head movements, and the improvements were retained for up to six months. Training with vibrotactile SA did not lead to significant additional improvements in the majority of the clinical outcomes except for the Activities-specific Balance Confidence scale. The study among older adults provided semi-supervised in-home balance rehabilitation training using a novel smartphone balance trainer. After completing eight weeks of balance training, participants who trained with vibrotactile SA showed significantly greater improvements in standing-related clinical outcomes, but not in gait-related clinical outcomes, compared with those who trained without SA. In addition to investigating the effects of long-term balance training with SA, we sought to study the effects of vibrotactile display design on people’s reaction times to vibrational cues. Among the various factors tested, the vibration frequency and tactor type had relatively small effects on reaction times, while stimulus location and secondary cognitive task had relatively large effects. Factors affected young and older adults’ reaction times in a similar manner, but with different magnitudes. Lastly, we explored the potential for ML to inform balance exercise progression for future applications of unsupervised balance training. We mapped body motion data measured by wearable inertial measurement units to balance assessment ratings provided by physical therapists. By training a multi-class classifier using the leave-one-participant-out cross-validation method, we found approximately 82% agreement among trained classifier and physical therapist assessments. The findings of this dissertation suggest that vibrotactile SA can be used as a rehabilitation tool to further improve a subset of clinical outcomes resulting from supervised balance rehabilitation training. Specifically, individuals who train with a SA device may have additional confidence in performing balance activities and greater postural stability, which could decrease their fear of falling and fall risk, and subsequently increase their quality of life. This research provides preliminary support for the hypothesized mechanism that SA promotes the central nervous system to reweight sensory inputs. The preliminary outcomes of this research also provide novel insights for unsupervised balance training that leverage wearable technology and ML techniques. By providing both SA and ML-based balance assessment ratings, the smart wearable device has the potential to improve individuals’ compliance and motivation for in-home balance training.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143901/1/baotian_1.pd

    Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation.

    Get PDF
    After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 187

    Get PDF
    This supplement to Aerospace Medicine and Biology lists 247 reports, articles and other documents announced during November 1978 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space. References describing similar effects of biological organisms of lower order are also included. Emphasis is placed on applied research, but reference to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the bibliography consists of a bibliographic citation accompanied in most cases by an abstract

    Robotic design and modelling of medical lower extremity exoskeletons

    Get PDF
    This study aims to explain the development of the robotic Lower Extremity Exoskeleton (LEE) systems between 1960 and 2019 in chronological order. The scans performed in the exoskeleton system’s design have shown that a modeling program, such as AnyBody, and OpenSim, should be used first to observe the design and software animation, followed by the mechanical development of the system using sensors and motors. Also, the use of OpenSim and AnyBody musculoskeletal system software has been proven to play an essential role in designing the human-exoskeleton by eliminating the high costs and risks of the mechanical designs. Furthermore, these modeling systems can enable rapid optimization of the LEE design by detecting the forces and torques falling on the human muscles

    Older adults demonstrate interlimb transfer of reactive gait adaptations to repeated unpredictable gait perturbations

    Get PDF
    The ability to rapidly adjust gait to cope with unexpected mechanical perturbations declines with ageing. Previous studies, however, have not ensured that gait stability pre-perturbation was equivalent across participants or age groups which may have influenced the outcomes. In this study, we investigate if age-related differences in stability following gait perturbations remain when all participants walk with equivalent stability. We also examine if interlimb transfer of gait adaptations are observed in healthy older adults, by examining if adaptation to repeated perturbations of one leg can benefit stability recovery when the other leg is perturbed. During walking at their stability-normalised walking speeds (young: 1.32 +/- 0.07 m/s; older: 1.31 +/- 0.13 m/s; normalised to an average margin of stability of 0.05 m), 30 young and 28 older healthy adults experienced ten unpredictable treadmill belt accelerations (the first and last applied to the right leg, the others to the left leg). Using kinematic data, we assessed the margins of stability during unperturbed walking and the first eight post-perturbation recovery steps. Older adults required three more steps to recover during the first perturbation to each leg than the young adults. Yet, after repeated perturbations of the left leg, older adults required only one more step to recover. Interestingly, for the untrained right leg, the older adults could regain stability with three fewer steps, indicating interlimb transfer of the improvements. Age differences in reactive gait stability remain even when participants' walk with equivalent stability. Furthermore, we show that healthy older adults can transfer improvements in balance recovery made during repeated perturbations to one limb to their recovery following a perturbation to the untrained limb

    Light-Weight Wearable Gyroscopic Actuators Can Modulate Balance Performance and Gait Characteristics:A Proof-of-Concept Study

    Get PDF
    Falling is a major cause of morbidity, and is often caused by a decrease in postural stability. A key component of postural stability is whole-body centroidal angular momentum, which can be influenced by control moment gyroscopes. In this proof-of-concept study, we explore the influence of our wearable robotic gyroscopic actuator “GyroPack” on the balance performance and gait characteristics of non-impaired individuals (seven female/eight male, 30 ± 7 years, 68.8 ± 8.4 kg). Participants performed a series of balance and walking tasks with and without wearing the GyroPack. The device displayed various control modes, which were hypothesised to positively, negatively, or neutrally impact postural control. When configured as a damper, the GyroPack increased mediolateral standing time and walking distance, on a balance beam, and decreased trunk angular velocity variability, while walking on a treadmill. When configured as a negative damper, both peak trunk angular rate and trunk angular velocity variability increased during treadmill walking. This exploratory study shows that gyroscopic actuators can influence balance and gait kinematics. Our results mirror the findings of our earlier studies; though, with more than 50% mass reduction of the device, practical and clinical applicability now appears within reach.</p

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
    • …
    corecore