2,112 research outputs found

    Ventilatory mechanics in thoracic surgery

    Get PDF
    This thesis proved that chest wall motion analysis technology could be used in thoracic surgery to answer a number of clinical and physiological questions. We used it either as a diagnostic tool or for the evaluation of an intervention outcome. We divided its use as a diagnostic tool into two categories; 1- diagnosis before surgery and 2- diagnosis after surgery. In the evaluation of an intervention outcome, we divided its use after a number of interventions: 1. Cosmetic Surgery: Chapter 5: The Effect of Pectus Carinatum (Pigeon Chest) Repair on Chest Wall Mechanics 2. Prognostic Surgery: a) Chapter 4: The Effect of Chest Wall Reconstruction on Chest Wall Mechanics b) Chapter 10: Late Changes in Chest Wall Mechanics Post Lung Resection: The Effect of Lung Cancer Resection In COPD patients 3. Palliative Surgery: a) Chapter 6: The Effect of Lung Volume Reduction Surgery on Chest Wall Mechanics b) Chapter 3: The Effect of Diaphragmatic Plication (Fixation) on Chest Wall Mechanics 4. Post-operative Intervention: Chapter 8: The Effect of Thoracic Nerve Blocks on Chest Wall Mechanic

    Breathing Pattern Disorders Distinguished from Healthy Breathing Patterns Using Optoelectronic Plethysmography

    Get PDF
    Tere is no gold standard diagnostic method for breathing pattern disorders (BPD) which is commonly diagnosed through the exclusion of other pathologies. Optoelectronic plethysmography (OEP) is a 3D motion capture technique that provides a comprehensive noninvasive assessment of chest wall during rest and exercise. Te purpose of this study was to determine if OEP can distinguish between active individuals classifed with and without BPD at rest and during exercise. Forty-seven individuals with a healthy breathing pattern (HBP) and twenty-six individuals with a BPD performed a submaximal exercise challenge. OEP measured the movement of the chest wall through the calculation of timing, percentage contribution, and phase angle breathing pattern variables. A mixed model repeated measures ANOVA analysed the OEP variables between the groups classified as HBP and BPD at rest, during exercise, and after recovery. At rest, regional contribution variables including ribcage percentage contribution (HBP: 71% and BPD: 69%), abdominal ribcage contribution (HBP: 13% and BPD: 11%), abdomen percentage contribution (HBP: 29% and BPD: 31%), and ribcage and abdomen volume index (HPB: 2.5 and BPD: 2.2) were significantly (p < 0.05) different between groups. During exercise, BPD displayed significantly (p < 0.05) more asynchrony between various thoracic compartments including the ribcage and abdomen phase angle (HBP: −1.9 and BPD: −2.7), pulmonary ribcage and abdomen phase angle (HBP: −0.5 and BPD, 0.5), abdominal ribcage and shoulders phase angle (HBP: −0.3 and BPD: 0.6), and pulmonary ribcage and shoulders phase angle (HBP: 0.2 and BPD: 0.6). Additionally, the novel variables inhale deviation (HBP: 8.8% and BPD: 19.7%) and exhale deviation (HBP: −10.9% and BPD: −17.6%) were also significantly (p < 0.05) different between the groups during high intensity exercise. Regional contribution and phase angles measured via OEP can distinguish BPD from HBP at rest and during exercise. Characteristics of BPD include asynchronous and thoracic dominant breathing patterns that could form part of future objective criteria for the diagnosis of BPD

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 182, July 1978

    Get PDF
    This bibliography lists 165 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1978

    Biosensing and Actuation—Platforms Coupling Body Input-Output Modalities for Affective Technologies

    Get PDF
    Research in the use of ubiquitous technologies, tracking systems and wearables within mental health domains is on the rise. In recent years, affective technologies have gained traction and garnered the interest of interdisciplinary fields as the research on such technologies matured. However, while the role of movement and bodily experience to affective experience is well-established, how to best address movement and engagement beyond measuring cues and signals in technology-driven interactions has been unclear. In a joint industry-academia effort, we aim to remodel how affective technologies can help address body and emotional self-awareness. We present an overview of biosignals that have become standard in low-cost physiological monitoring and show how these can be matched with methods and engagements used by interaction designers skilled in designing for bodily engagement and aesthetic experiences. Taking both strands of work together offers unprecedented design opportunities that inspire further research. Through first-person soma design, an approach that draws upon the designer’s felt experience and puts the sentient body at the forefront, we outline a comprehensive work for the creation of novel interactions in the form of couplings that combine biosensing and body feedback modalities of relevance to affective health. These couplings lie within the creation of design toolkits that have the potential to render rich embodied interactions to the designer/user. As a result we introduce the concept of “orchestration”. By orchestration, we refer to the design of the overall interaction: coupling sensors to actuation of relevance to the affective experience; initiating and closing the interaction; habituating; helping improve on the users’ body awareness and engagement with emotional experiences; soothing, calming, or energising, depending on the affective health condition and the intentions of the designer. Through the creation of a range of prototypes and couplings we elicited requirements on broader orchestration mechanisms. First-person soma design lets researchers look afresh at biosignals that, when experienced through the body, are called to reshape affective technologies with novel ways to interpret biodata, feel it, understand it and reflect upon our bodies

    The Assessment and Management of Dysfunctional Breathing in Children

    Get PDF

    Linee Guida ERC 2010

    Get PDF
    • 

    corecore