187,148 research outputs found

    Human Group Activity Recognition based on Modelling Moving Regions Interdependencies

    Get PDF
    n this research study, we model the interdepen- dency of actions performed by people in a group in order to identify their activity. Unlike single human activity recognition, in interacting groups the local movement activity is usually influenced by the other persons in the group. We propose a model to describe the discriminative characteristics of group activity by considering the relations between motion flows and the locations of moving regions. The inputs of the proposed model are jointly represented in time-space and time-movement spaces. These spaces are modelled using Kernel Density Estimation (KDE) which is then fed into a machine learning classifier. Unlike in other group-based human activity recognition algorithms, the proposed methodology is automatic and does not rely on any pedestrian detection or on the manual annotation of tracks. Index Terms —Group Activity Identification, Motion Segm

    Impact of Movements on Facial Expression Recognition

    Get PDF
    The ability to recognize human emotions can be a useful skill for robots. Emotion recognition can help robots understand our responses to robot movements and actions. Human emotions can be recognized through facial expressions. Facial Expression Recognition (FER) is a well-established research area, how- ever, the majority of prior research is based on static datasets of images. With robots often the subject is moving, the robot is moving, or both. The purpose of this research is to determine the impact of movement on facial expression recognition. We apply a pre-existing model for FER, which performs around 70.86% on a given collection of images. We experiment with three different conditions: No motion by subject or robot, motion by one of the human or robot, and finally both human and robot in motion. We then measure the impact on FER accuracy introduced by these movements. This research relates to Computer Vision, Machine Learning, and Human-Robot Interaction

    Action Classification in Human Robot Interaction Cells in Manufacturing

    Get PDF
    Action recognition has become a prerequisite approach to fluent Human-Robot Interaction (HRI) due to a high degree of movement flexibility. With the improvements in machine learning algorithms, robots are gradually transitioning into more human-populated areas. However, HRI systems demand the need for robots to possess enough cognition. The action recognition algorithms require massive training datasets, structural information of objects in the environment, and less expensive models in terms of computational complexity. In addition, many such algorithms are trained on datasets derived from daily activities. The algorithms trained on non-industrial datasets may have an unfavorable impact on implementing models and validating actions in an industrial context. This study proposed a lightweight deep learning model for classifying low-level actions in an assembly setting. The model is based on optical flow feature elicitation and mobilenetV2-SSD action classification and is trained and assessed on an actual industrial activities’ dataset. The experimental outcomes show that the presented method is futuristic and does not require extensive preprocessing; therefore, it can be promising in terms of the feasibility of action recognition for mutual performance monitoring in real-world HRI applications. The test result shows 80% accuracy for low-level RGB action classes. The study’s primary objective is to generate experimental results that may be used as a reference for future HRI algorithms based on the InHard dataset

    Research on motion recognition based on multi-dimensional sensing data and deep learning algorithms

    Get PDF
    Motion recognition provides movement information for people with physical dysfunction, the elderly and motion-sensing games production, and is important for accurate recognition of human motion. We employed three classical machine learning algorithms and three deep learning algorithm models for motion recognition, namely Random Forests (RF), K-Nearest Neighbors (KNN) and Decision Tree (DT) and Dynamic Neural Network (DNN), Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). Compared with the Inertial Measurement Unit (IMU) worn on seven parts of body. Overall, the difference in performance among the three classical machine learning algorithms in this study was insignificant. The RF algorithm model performed best, having achieved a recognition rate of 96.67%, followed by the KNN algorithm model with an optimal recognition rate of 95.31% and the DT algorithm with an optimal recognition rate of 94.85%. The performance difference among deep learning algorithm models was significant. The DNN algorithm model performed best, having achieved a recognition rate of 97.71%. Our study validated the feasibility of using multidimensional data for motion recognition and demonstrated that the optimal wearing part for distinguishing daily activities based on multidimensional sensing data was the waist. In terms of algorithms, deep learning algorithms based on multi-dimensional sensors performed better, and tree-structured models still have better performance in traditional machine learning algorithms. The results indicated that IMU combined with deep learning algorithms can effectively recognize actions and provided a promising basis for a wider range of applications in the field of motion recognition

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Probabilistic movement modeling for intention inference in human-robot interaction.

    No full text
    Intention inference can be an essential step toward efficient humanrobot interaction. For this purpose, we propose the Intention-Driven Dynamics Model (IDDM) to probabilistically model the generative process of movements that are directed by the intention. The IDDM allows to infer the intention from observed movements using Bayes ’ theorem. The IDDM simultaneously finds a latent state representation of noisy and highdimensional observations, and models the intention-driven dynamics in the latent states. As most robotics applications are subject to real-time constraints, we develop an efficient online algorithm that allows for real-time intention inference. Two human-robot interaction scenarios, i.e., target prediction for robot table tennis and action recognition for interactive humanoid robots, are used to evaluate the performance of our inference algorithm. In both intention inference tasks, the proposed algorithm achieves substantial improvements over support vector machines and Gaussian processes.

    Large-scale Continuous Gesture Recognition Using Convolutional Neural Networks

    Full text link
    This paper addresses the problem of continuous gesture recognition from sequences of depth maps using convolutional neutral networks (ConvNets). The proposed method first segments individual gestures from a depth sequence based on quantity of movement (QOM). For each segmented gesture, an Improved Depth Motion Map (IDMM), which converts the depth sequence into one image, is constructed and fed to a ConvNet for recognition. The IDMM effectively encodes both spatial and temporal information and allows the fine-tuning with existing ConvNet models for classification without introducing millions of parameters to learn. The proposed method is evaluated on the Large-scale Continuous Gesture Recognition of the ChaLearn Looking at People (LAP) challenge 2016. It achieved the performance of 0.2655 (Mean Jaccard Index) and ranked 3rd3^{rd} place in this challenge
    • …
    corecore