9,160 research outputs found

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Prosthetic joint infections

    Get PDF
    Objectives: To review the available literature on prosthetic joint infections and provide recommendations on management particularly the importance of identifying the causative organism and starting the most appropriate antimicrobial therapy. Methods: The medical literature was searched using PubMed, employing the key words prosthetic joint infections. There appears to be no UK consensus guidelines on the management of prosthetic joint infections or the use of prophylactic antibiotics to prevent them. There is however a number of key documents and trust policies which deal with the subject extensively. We also made use of ‘The Sanford Guide to Antimicrobial therapy 2012’ for the latest recommendations on the correct antimicrobial therapy. Conclusion: Although diagnosis is often difficult, there are a number of investigations which can help us identify the organism. We recommend that the local prevalence of such infections is studied together with identification of the commonest organisms. Work is already underway between the infectious disease team and orthopaedic surgeons to devise locally adapted protocols for the identification and management of such infections. They should work in close liaison to implement the correct treatment which often involves a combination of both surgical and antimicrobial therapy.peer-reviewe

    Development of a Step Counting Algorithm Using the Ambulatory Tibia Load Analysis System for Tibia Fracture Patients

    Get PDF
    Introduction: Ambulation can be used to monitor the healing of lower extremity fractures. However, the ambulatory behavior of tibia fracture patients remains unknown due to an inability to continuously quantify ambulation outside of the clinic. The goal of this study was to design and validate an algorithm to assess ambulation in tibia fracture patients using the ambulatory tibial load analysis system during recovery, outside of the clinic. Methods Data were collected from a cyclic tester, 14 healthy volunteers performing a 2-min walk test on the treadmill, and 10 tibia fracture patients who wore the ambulatory tibial load analysis system during recovery. Results The algorithm accurately detected 2000/2000 steps from simulated ambulatory data. (see full text for full abstract

    Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty

    Get PDF
    A new method for the detection of gait cycle phases using only two miniature accelerometers together with a light, portable digital recorder is proposed. Each subject is asked to walk on a walkway at his/her own preferred speed. Gait analysis was performed using an original method of computing the values of temporal parameters from accelerometer signals. First, to validate the accelerometric method, measurements are taken on a group of healthy subjects. No significant differences are observed between the results thus obtained and those from pressure sensors attached under the foot. Then, measurements using only accelerometers are performed on a group of 12 patients with unilateral hip osteo-arthritis. The gait analysis is carried out just before hip arthroplasty and again, three, six and nine months afterwards. A mean decrease of 88% of asymmetry of stance time and especially a mean decrease of 250% of asymmetry of double support time are observed, nine months after the operation. These results confirm the validity of the proposed method for healthy subjects and its efficiency for functional evaluation of gait improvement after arthroplast

    Development and Implementation of a Computational Modeling Tool for Evaluation of THA Component Position

    Get PDF
    The human body is a complicated structure with muscles, ligaments, bones, and joints. Modeling human body with computational tools are becoming a trend [1]. More importantly, using computational tools to evaluate human body is a non-invasive technique that could help surgeons and researchers evaluate implant products [2]. Therefore, the development of a model which can analyze both implant sizing suggestion and kinematics of subject specific data could prove valuable. For total hip arthroplasty, one common complication is in vivo separation and dislocation of the femoral head within the acetabular cup [3] [4]. Developing a successful computational tool to address this issue includes developing a dynamic model of hip joint, implementing implant sizing suggestion algorithms and computing component alignments. Due to advancement in technology, the current focus has been to develop patient-specific solutions, a combined program of both hip model and implant suggestion model has been developed. In this dissertation, the primary objective is to develop a fully functional hip analysis software that not only can suggestion and template the implant sizing and position, but the software can also utilize the patient specific data to run simulation with different activities. The second objective of this dissertation is to conduct hip analysis studies using hip analysis software. Overall, the results in this dissertation discuss the effect of different stem positions and surgeon preferences on the outcome of the Total Hip Arthroplasty

    Technical Contributions to the Quality of Telerehabilitation Platforms: Case Study—ePHoRt Project

    Get PDF
    This chapter proposes three main technical contributions for the development of a telerehabilitation platform, named ePHoRT, for patients recovering from hip surgery. The first contribution is the application of a diffuse 3D model for the detection of rehabilitation exercises after hip surgery. The model applies fuzzy logic, which allows identifying in real time if a patient is performing a right or wrong movement, assisted by an avatar in 3D. The avatar copies the movements of the patient through a Kinect camera. The second contribution involves the proposal of an iterative method to improve the usability of telerehabilitation platforms along the development life cycle. The proposed method involves the use of an inspection method and includes protocols and instruments. This method has been validated in the ePHoRT project. Finally, the chapter describes accessibility guidelines for educational resources. It proposes accessibility standards for the content of educational resources in video and PDF formats in the telerehabilitation platform according to the Web Content Accessibility Guidelines (WCAG)
    corecore