51,946 research outputs found

    Meta-analysis of RNA-seq expression data across species, tissues and studies.

    Get PDF
    BackgroundDifferences in gene expression drive phenotypic differences between species, yet major organs and tissues generally have conserved gene expression programs. Several comparative transcriptomic studies have observed greater similarity in gene expression between homologous tissues from different vertebrate species than between diverse tissues of the same species. However, a recent study by Lin and colleagues reached the opposite conclusion. These studies differed in the species and tissues analyzed, and in technical details of library preparation, sequencing, read mapping, normalization, gene sets, and clustering methods.ResultsTo better understand gene expression evolution we reanalyzed data from four studies, including that of Lin, encompassing 6-13 tissues each from 11 vertebrate species using standardized mapping, normalization, and clustering methods. An analysis of independent data showed that the set of tissues chosen by Lin et al. were more similar to each other than those analyzed by previous studies. Comparing expression in five common tissues from the four studies, we observed that samples clustered exclusively by tissue rather than by species or study, supporting conservation of organ physiology in mammals. Furthermore, inter-study distances between homologous tissues were generally less than intra-study distances among different tissues, enabling informative meta-analyses. Notably, when comparing expression divergence of tissues over time to expression variation across 51 human GTEx tissues, we could accurately predict the clustering of expression for arbitrary pairs of tissues and species.ConclusionsThese results provide a framework for the design of future evolutionary studies of gene expression and demonstrate the utility of comparing RNA-seq data across studies

    Deep generative modeling for single-cell transcriptomics.

    Get PDF
    Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task

    Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering

    Get PDF
    Background: Many important high throughput projects use in situ hybridization and may require the analysis of images of spatial cross sections of organisms taken with cellular level resolution. Projects creating gene expression atlases at unprecedented scales for the embryonic fruit fly as well as the embryonic and adult mouse already involve the analysis of hundreds of thousands of high resolution experimental images mapping mRNA expression patterns. Challenges include accurate registration of highly deformed tissues, associating cells with known anatomical regions, and identifying groups of genes whose expression is coordinately regulated with respect to both concentration and spatial location. Solutions to these and other challenges will lead to a richer understanding of the complex system aspects of gene regulation in heterogeneous tissue. Results: We present an end-to-end approach for processing raw in situ expression imagery and performing subsequent analysis. We use a non-linear, information theoretic based image registration technique specifically adapted for mapping expression images to anatomical annotations and a method for extracting expression information within an anatomical region. Our method consists of coarse registration, fine registration, and expression feature extraction steps. From this we obtain a matrix for expression characteristics with rows corresponding to genes and columns corresponding to anatomical sub-structures. We perform matrix block cluster analysis using a novel row-column mixture model and we relate clustered patterns to Gene Ontology (GO) annotations. Conclusion: Resulting registrations suggest that our method is robust over intensity levels and shape variations in ISH imagery. Functional enrichment studies from both simple analysis and block clustering indicate that gene relationships consistent with biological knowledge of neuronal gene functions can be extracted from large ISH image databases such as the Allen Brain Atlas [1] and the Max-Planck Institute [2] using our method. While we focus here on imagery and experiments of the mouse brain our approach should be applicable to a variety of in situ experiments

    Interactions between the neuromodulatory systems and the amygdala: exploratory survey using the Allen Mouse Brain Atlas.

    Get PDF
    Neuromodulatory systems originate in nuclei localized in the subcortical region of the brain and control fundamental behaviors by interacting with many areas of the central nervous system. An exploratory survey of the cholinergic, dopaminergic, noradrenergic, and serotonergic receptor expression energy in the amygdala, and in the neuromodulatory areas themselves was undertaken using the Allen Mouse Brain Atlas. The amygdala was chosen because of its importance in cognitive behavior and its bidirectional interaction with the neuromodulatory systems. The gene expression data of 38 neuromodulatory receptor subtypes were examined across 13 brain regions. The substantia innominata of the basal forebrain and regions of the amygdala had the highest amount of receptor expression energy for all four neuromodulatory systems examined. The ventral tegmental area also displayed high receptor expression of all four neuromodulators. In contrast, the locus coeruleus displayed low receptor expression energy overall. In general, cholinergic receptor expression was an order of magnitude greater than other neuromodulatory receptors. Since the nuclei of these neuromodulatory systems are thought to be the source of specific neurotransmitters, the projections from these nuclei to target regions may be inferred by receptor expression energy. The comprehensive analysis revealed many connectivity relations and receptor localization that had not been previously reported. The methodology presented here may be applied to other neural systems with similar characteristics, and to other animal models as these brain atlases become available
    • …
    corecore