64 research outputs found

    A comparative study of WPD and EMD for shaft fault diagnosis

    Get PDF
    Fault diagnosis of incipient crack failure in rotating shafts allows the detection and identification of performance degradation as early as possible in industrial plants, such as downtime and potential injury to personnel. The present work studies the performance and effectiveness of crack fault detection by means of applying wavelet packet decomposition (WPD) and empirical mode decomposition (EMD) on fault diagnosis of rotating shafts using multiscale entropy (MSE). After WPD and EMD, the most sensitive reconstruction vectors and intrinsic mode functions (IMFs) are selected using Shannon entropy. Then, these feature vectors are fed into support vector machine (SVM) for fault classification, where the entropy features represent the complexity of vibration signals with different scales. Experimental results have demonstrated that WPD combined with MSE can achieve an accuracy of 97.3% for crack fault detection in rotating shafts, whilst EMD combined with MSE has shown a higher detection rate of 98.5%

    Real-time monitoring of wind turbine generator shaft alignment using laser measurement

    Get PDF
    Shaft Misalignment is one of the most common sources of trouble of wind turbine drive train when rigid couplings connect the shafts. Ideal alignment of the shaft is difficult to be obtained and the couplings attached to the shaft may present angular or parallel misalignment defined also as lateral and axially misalignment. Despite misalignment is often observed in the practice, there are relatively few studies on wind turbine shaft misalignment in the literature and their results are sometimes conflicting. The aim of this research is to use laser based metrology techniques to capture the positional changes of wind turbines in service and aligning drivelines in wind turbine. By using sets of lasers on a shaft alignment rig, and then determining the average and periodic amplitude from an ensemble averaged signal, the degree of misalignment can be found and the necessary corrective action found

    Fast Spectral Correlation Detector for Periodic Impulse Extraction of Rotating Machinery

    Get PDF

    Signal Denoising Method Based on Adaptive Redundant Second-Generation Wavelet for Rotating Machinery Fault Diagnosis

    Get PDF
    Vibration signal of rotating machinery is often submerged in a large amount of noise, leading to the decrease of fault diagnosis accuracy. In order to improve the denoising effect of the vibration signal, an adaptive redundant second-generation wavelet (ARSGW) denoising method is proposed. In this method, a new index for denoising result evaluation (IDRE) is constructed first. Then, the maximum value of IDRE and the genetic algorithm are taken as the optimization objective and the optimization algorithm, respectively, to search for the optimal parameters of the ARSGW. The obtained optimal redundant second-generation wavelet (RSGW) is used for vibration signal denoising. After that, features are extracted from the denoised signal and then input into the support vector machine method for fault recognition. The application result indicates that the proposed ARSGW denoising method can effectively improve the accuracy of rotating machinery fault diagnosis

    Algorithms for Fault Detection and Diagnosis

    Get PDF
    Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of “Algorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions
    corecore