2,557 research outputs found

    Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities

    Get PDF
    The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies. Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes. Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics. Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities. Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system

    The functional organization of descending sensory-motor pathways in Drosophila

    Get PDF
    In most animals, the brain controls the body via a set of descending neurons (DNs) that traverse the neck. DN activity activates, maintains or modulates locomotion and other behaviors. Individual DNs have been well-studied in species from insects to primates, but little is known about overall connectivity patterns across the DN population. We systematically investigated DN anatomy in Drosophila melanogaster and created over 100 transgenic lines targeting individual cell types. We identified roughly half of all Drosophila DNs and comprehensively map connectivity between sensory and motor neuropils in the brain and nerve cord, respectively. We find the nerve cord is a layered system of neuropils reflecting the fly’s capability for two largely independent means of locomotion -- walking and flight -- using distinct sets of appendages. Our results reveal the basic functional map of descending pathways in flies and provide tools for systematic interrogation of neural circuits

    Unsupervised Discovery and Representation of Subspace Trends in Massive Biomedical Datasets

    Get PDF
    The goal of this dissertation is to develop unsupervised algorithms for discovering previously unknown subspace trends in massive multivariate biomedical data sets without the benefit of prior information. A subspace trend is a sustained pattern of gradual/progressive changes within an unknown subset of feature dimensions. A fundamental challenge to subspace trend discovery is the presence of irrelevant data dimensions, noise, outliers, and confusion from multiple subspace trends driven by independent factors that are mixed in with each other. These factors can obscure the trends in traditional dimension reduction and projection based data visualizations. To overcome these limitations, we propose a novel graph-theoretic neighborhood similarity measure for sensing concordant progressive changes across data dimensions. Using this measure, we present an unsupervised algorithm for trend-relevant feature selection and visualization. Additionally, we propose to use an efficient online density-based representation to make the algorithm scalable for massive datasets. The representation not only assists in trend discovery, but also in cluster detection including rare populations. Our method has been successfully applied to diverse synthetic and real-world biomedical datasets, such as gene expression microarray and arbor morphology of neurons and microglia in brain tissue. Derived representations revealed biologically meaningful hidden subspace trend(s) that were obscured by irrelevant features and noise. Although our applications are mostly from the biomedical domain, the proposed algorithm is broadly applicable to exploratory analysis of high-dimensional data including visualization, hypothesis generation, knowledge discovery, and prediction in diverse other applications.Electrical and Computer Engineering, Department o

    Analysis and network simulations of honeybee interneurons responsive to waggle dance vibration signals

    Get PDF
    BACKGROUND: Honeybees have long fascinated neuroscientists with their highly evolved social structure and rich behavioral repertoire. They sense air vibrations with their antennae, which is vital for several activities during foraging, like waggle dance communication and flight. GOALS: This thesis presents the investigation of the function of an identified vibration-sensitive interneuron, DL-Int-1. Primary goals were the investigation of (i) adaptations during maturation and (ii) the role of DL-Int-1 in networks encoding distance information of waggle dance vibration signals. RESULTS: Visual inspection indicated that DL-Int-1 morphologies had similar gross structure, but were translated, rotated and scaled relative to each other. To enable detailed spatial comparison, an algorithm for the spatial co-registration of neuron morphologies, Reg-MaxS-N was developed and validated. Experimental data from DL-Int-1 was provided by our Japanese collaborators. Comparison of morphologies from newly emerged adult and forager DL-Int-1 revealed minor changes in gross dendritic features and consistent, region-dependent and spatially localized changes in dendritic density. Comparison of electrophysiological response properties showed an increase in firing rate differences between stimulus and non-stimulus periods during maturation. A putative disinhibitory network in the honeybee primary auditory center was proposed based on experimental evidence. Simulations showed that the network was consistent with experimental observations and clarified the central inhibitory role of DL-Int-1 in shaping the network output. RELEVANCE: Reg-MaxS-N presents a novel approach for the spatial co-registration of morphologies. Adaptations in DL-Int-1 morphology during maturation indicate improved connectivity and signal propagation. The central role of DL-Int-1 in a disinhibitory network in the honeybee primary auditory center combined with adaptions in its response properties during maturation could indicate better encoding of distance information from waggle dance vibration sig- nals
    • …
    corecore