5,342 research outputs found

    Resting-State Functional Connectivity in Late-Life Depression: Higher Global Connectivity and More Long Distance Connections

    Full text link
    Functional magnetic resonance imaging recordings in the resting-state (RS) from the human brain are characterized by spontaneous low-frequency fluctuations in the blood oxygenation level dependent signal that reveal functional connectivity (FC) via their spatial synchronicity. This RS study applied network analysis to compare FC between late-life depression (LLD) patients and control subjects. Raw cross-correlation matrices (CM) for LLD were characterized by higher FC. We analyzed the small-world (SW) and modular organization of these networks consisting of 110 nodes each as well as the connectivity patterns of individual nodes of the basal ganglia. Topological network measures showed no significant differences between groups. The composition of top hubs was similar between LLD and control subjects, however in the LLD group posterior medial-parietal regions were more highly connected compared to controls. In LLD, a number of brain regions showed connections with more distant neighbors leading to an increase of the average Euclidean distance between connected regions compared to controls. In addition, right caudate nucleus connectivity was more diffuse in LLD. In summary, LLD was associated with overall increased FC strength and changes in the average distance between connected nodes, but did not lead to global changes in SW or modular organization

    Children with cerebral palsy exhibit greater and more regular postural sway than typically developing children

    Get PDF
    Following recent advances in the analysis of centre-of-pressure (COP) recordings, we examined the structure of COP trajectories in ten children (nine in the analyses) with cerebral palsy (CP) and nine typically developing (TD) children while standing quietly with eyes open (EO) and eyes closed (EC) and with concurrent visual COP feedback (FB). In particular, we quantified COP trajectories in terms of both the amount and regularity of sway. We hypothesised that: (1) compared to TD children, CP children exhibit a greater amount of sway and more regular sway and (2) concurrent visual feedback (creating an external functional context for postural control, inducing a more external focus of attention) decreases both the amount of sway and sway regularity in TD and CP children alike, while closing the eyes has opposite effects. The data were largely in agreement with both hypotheses. Compared to TD children, the amount of sway tended to be larger in CP children, while sway was more regular. Furthermore, the presence of concurrent visual feedback resulted in less regular sway compared to the EO and EC conditions. This effect was less pronounced in the CP group where posturograms were most regular in the EO condition rather than in the EC condition, as in the control group. Nonetheless, we concluded that CP children might benefit from therapies involving postural tasks with an external functional context for postural control

    Macroeconomic Factors and Oil Futures Prices: A Data-Rich Model

    Get PDF
    I study the dynamics of oil futures prices in the NYMEX using a large panel dataset that includes global macroeconomic indicators, financial market indices, quantities and prices of energy products. I extract common factors from these series and estimate a Factor-Augmented Vector Autoregression for the maturity structure of oil futures prices. I find that latent factors generate information that, once combined with that of the yields, improves the forecasting performance for oil prices. Furthermore, I show that a factor correlated to purely financial developments contributes to the model performance, in addition to factors related to energy quantities and prices.Crude Oil; Futures Markets; Factor Models

    Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity

    Full text link
    The current exponential rise in recording capacity calls for new approaches for analysing and interpreting neural data. Effective dimensionality has emerged as a key concept for describing neural activity at the collective level, yet different studies rely on a variety of definitions of it. Here we focus on the complementary notions of intrinsic and embedding dimensionality, and argue that they provide a useful framework for extracting computational principles from data. Reviewing recent works, we propose that the intrinsic dimensionality reflects information about the latent variables encoded in collective activity, while embedding dimensionality reveals the manner in which this information is processed. Network models form an ideal substrate for testing more specifically the hypotheses on the computational principles reflected through intrinsic and embedding dimensionality

    Innovation and diffusion of clean/green technology: Can patent commons help?

    Get PDF
    This paper explores the characteristics of 238 patents on 94 “inventions” contributed by major multinational innovators to the “Eco-Patent Commons”, which provides royalty-free access to third parties to patented climate change related innovations. By comparing the pledged patents to other patents in the same technologies or held by the same multinationals, we investigate the motives of the contributing firms as well as the potential for such commons to encourage innovation and diffusion of climate change related technologies. This study, therefore, indirectly provides evidence on the role of patents in the development and diffusion of green technologies. More generally, the paper sheds light on the performance of hybrid forms of knowledge management that combine open innovation and patenting.patent commons, green technology, eco-aptents, diffusion, climate change

    Multi-expert learning of adaptive legged locomotion

    Get PDF
    Achieving versatile robot locomotion requires motor skills which can adapt to previously unseen situations. We propose a Multi-Expert Learning Architecture (MELA) that learns to generate adaptive skills from a group of representative expert skills. During training, MELA is first initialised by a distinct set of pre-trained experts, each in a separate deep neural network (DNN). Then by learning the combination of these DNNs using a Gating Neural Network (GNN), MELA can acquire more specialised experts and transitional skills across various locomotion modes. During runtime, MELA constantly blends multiple DNNs and dynamically synthesises a new DNN to produce adaptive behaviours in response to changing situations. This approach leverages the advantages of trained expert skills and the fast online synthesis of adaptive policies to generate responsive motor skills during the changing tasks. Using a unified MELA framework, we demonstrated successful multi-skill locomotion on a real quadruped robot that performed coherent trotting, steering, and fall recovery autonomously, and showed the merit of multi-expert learning generating behaviours which can adapt to unseen scenarios

    Safe Haptics-enabled Patient-Robot Interaction for Robotic and Telerobotic Rehabilitation of Neuromuscular Disorders: Control Design and Analysis

    Get PDF
    Motivation: Current statistics show that the population of seniors and the incidence rate of age-related neuromuscular disorders are rapidly increasing worldwide. Improving medical care is likely to increase the survival rate but will result in even more patients in need of Assistive, Rehabilitation and Assessment (ARA) services for extended periods which will place a significant burden on the world\u27s healthcare systems. In many cases, the only alternative is limited and often delayed outpatient therapy. The situation will be worse for patients in remote areas. One potential solution is to develop technologies that provide efficient and safe means of in-hospital and in-home kinesthetic rehabilitation. In this regard, Haptics-enabled Interactive Robotic Neurorehabilitation (HIRN) systems have been developed. Existing Challenges: Although there are specific advantages with the use of HIRN technologies, there still exist several technical and control challenges, e.g., (a) absence of direct interactive physical interaction between therapists and patients; (b) questionable adaptability and flexibility considering the sensorimotor needs of patients; (c) limited accessibility in remote areas; and (d) guaranteeing patient-robot interaction safety while maximizing system transparency, especially when high control effort is needed for severely disabled patients, when the robot is to be used in a patient\u27s home or when the patient experiences involuntary movements. These challenges have provided the motivation for this research. Research Statement: In this project, a novel haptics-enabled telerobotic rehabilitation framework is designed, analyzed and implemented that can be used as a new paradigm for delivering motor therapy which gives therapists direct kinesthetic supervision over the robotic rehabilitation procedure. The system also allows for kinesthetic remote and ultimately in-home rehabilitation. To guarantee interaction safety while maximizing the performance of the system, a new framework for designing stabilizing controllers is developed initially based on small-gain theory and then completed using strong passivity theory. The proposed control framework takes into account knowledge about the variable biomechanical capabilities of the patient\u27s limb(s) in absorbing interaction forces and mechanical energy. The technique is generalized for use for classical rehabilitation robotic systems to realize patient-robot interaction safety while enhancing performance. In the next step, the proposed telerobotic system is studied as a modality of training for classical HIRN systems. The goal is to first model and then regenerate the prescribed kinesthetic supervision of an expert therapist. To broaden the population of patients who can use the technology and HIRN systems, a new control strategy is designed for patients experiencing involuntary movements. As the last step, the outcomes of the proposed theoretical and technological developments are translated to designing assistive mechatronic tools for patients with force and motion control deficits. This study shows that proper augmentation of haptic inputs can not only enhance the transparency and safety of robotic and telerobotic rehabilitation systems, but it can also assist patients with force and motion control deficiencies
    corecore