1,898 research outputs found

    Motor Imagery EEG Recognition using Deep Generative Adversarial Network with EMD for BCI Applications

    Get PDF
    The activities for motor imagery (MI) movements in Electroencephalography (EEG) are still interesting and challenging. BCI (Brain Computer Interface) allows the brain signals to control the external devices and also helps a disabled person suffering from neuromuscular disorders. In any BCI system, the two most essential steps are feature extraction and classification method. However, in this paper, the MI classification is improved by the performance of Deep Learning (DL) concept. In this proposed system two-moment imagination of right hand and right foot from the BCI competition three datasets IVA has been taken and classification methods utilizing Conventional neural network (CNN) and Generative Adversarial Network (GAN) are developed. The training time is reduced and non-stationary problem is managed by applying Empirical mode decomposition (EMD) and mixing their intrinsic mode functions (IMFs) in feature extraction technique. The experimental result indicates the proposed GAN classification technique achieves better classification accuracy in terms of 95.29% than the CNN of 89.38%. The proposed GAN method achieves an average positive rate of 62% and average false positive rate of 3.4% on BCI competition three datasets IVA whose EEG facts were resulting from the similar C3, C4, and Cz channels of the motor cortex

    BCI applications based on artificial intelligence oriented to deep learning techniques

    Get PDF
    A Brain-Computer Interface, BCI, can decode the brain signals corresponding to the intentions of individuals who have lost neuromuscular connection, to reestablish communication to control external devices. To this aim, BCI acquires brain signals as Electroencephalography (EEG) or Electrocorticography (ECoG), uses signal processing techniques and extracts features to train classifiers for providing proper control instructions. BCI development has increased in the last decades, improving its performance through the use of different signal processing techniques for feature extraction and artificial intelligence approaches for classification, such as deep learning-oriented classifiers. All of these can assure more accurate assistive systems but also can enable an analysis of the learning process of signal characteristics for the classification task. Initially, this work proposes the use of a priori knowledge and a correlation measure to select the most discriminative ECoG signal electrodes. Then, signals are processed using spatial filtering and three different types of temporal filtering, followed by a classifier made of stacked autoencoders and a softmax layer to discriminate between ECoG signals from two types of visual stimuli. Results show that the average accuracy obtained is 97% (+/- 0.02%), which is similar to state-of-the-art techniques, nevertheless, this method uses minimal prior physiological and an automated statistical technique to select some electrodes to train the classifier. Also, this work presents classifier analysis, figuring out which are the most relevant signal features useful for visual stimuli classification. The features and physiological information such as the brain areas involved are compared. Finally, this research uses Convolutional Neural Networks (CNN) or Convnets to classify 5 categories of motor tasks EEG signals. Movement-related cortical potentials (MRCPs) are used as a priori information to improve the processing of time-frequency representation of EEG signals. Results show an increase of more than 25% in average accuracy compared to a state-of-the-art method that uses the same database. In addition, an analysis of CNN or ConvNets filters and feature maps is done to and the most relevant signal characteristics that can help classify the five types of motor tasks.DoctoradoDoctor en Ingeniería Eléctrica y Electrónic

    Deep Learning Methods for EEG Signals Classification of Motor Imagery in BCI

    Get PDF
    EEG signals are obtained from an EEG device after recording the user's brain signals. EEG signals can be generated by the user after performing motor movements or imagery tasks. Motor Imagery (MI) is the task of imagining motor movements that resemble the original motor movements. Brain Computer Interface (BCI) bridges interactions between users and applications in performing tasks. Brain Computer Interface (BCI) Competition IV 2a was used in this study. A fully automated correction method of EOG artifacts in EEG recordings was applied in order to remove artifacts and Common Spatial Pattern (CSP) to get features that can distinguish motor imagery tasks. In this study, a comparative studies between two deep learning methods was explored, namely Deep Belief Network (DBN) and Long Short Term Memory (LSTM). Usability of both deep learning methods was evaluated using the BCI Competition IV-2a dataset. The experimental results of these two deep learning methods show average accuracy of 50.35% for DBN and 49.65% for LSTM

    Lightweight Machine Learning with Brain Signals

    Full text link
    Electroencephalography(EEG) signals are gaining popularity in Brain-Computer Interface(BCI) systems and neural engineering applications thanks to their portability and availability. Inevitably, the sensory electrodes on the entire scalp would collect signals irrelevant to the particular BCI task, increasing the risks of overfitting in machine learning-based predictions. While this issue is being addressed by scaling up the EEG datasets and handcrafting the complex predictive models, this also leads to increased computation costs. Moreover, the model trained for one set of subjects cannot easily be adapted to other sets due to inter-subject variability, which creates even higher over-fitting risks. Meanwhile, despite previous studies using either convolutional neural networks(CNNs) or graph neural networks(GNNs) to determine spatial correlations between brain regions, they fail to capture brain functional connectivity beyond physical proximity. To this end, we propose 1) removing task-irrelevant noises instead of merely complicating models; 2) extracting subject-invariant discriminative EEG encodings, by taking functional connectivity into account; 3) navigating and training deep learning model with the most critical EEG channels; 4) detecting most similar EEG segments with target subject to reduce the cost of computation as well as inter-subject variability. Specifically, we construct a task-adaptive graph representation of brain network based on topological functional connectivity rather than distance-based connections. Further, non-contributory EEG channels are excluded by selecting only functional regions relevant to the corresponding intention. Lastly, contributory EEG segments are detected by several similarity estimation metrics, we then evaluate and train our proposed framework upon detected EEG segments to compare the performance of different metrics in EEG BCI tasks. We empirically show that our proposed approach, SIFT-EEG, outperforms state-of-the-art, with around 4% and 7% improvements over CNN-based and GNN-based models, on performing motor imagery predictions. Also, the task-adaptive channel selection demonstrates similar predictive performance with only 20% of raw EEG data. Moreover, the best-performed metric can achieve a high level of accuracy with less than 9% training data, suggesting a possible shift in direction for future works other than simply scaling up the model
    corecore