105 research outputs found

    Brain-Computer Interfaces using Machine Learning

    Get PDF
    This thesis explores machine learning models for the analysis and classification of electroencephalographic (EEG) signals used in Brain-Computer Interface (BCI) systems. The goal is 1) to develop a system that allows users to control home-automation devices using their mind, and 2) to investigate whether it is possible to achieve this, using low-cost EEG equipment. The thesis includes both a theoretical and a practical part. In the theoretical part, we overview the underlying principles of Brain-Computer Interface systems, as well as, different approaches for the interpretation and the classification of brain signals. We also discuss the emergent launch of low-cost EEG equipment on the market and its use beyond clinical research. We then dive into more technical details that involve signal processing and classification of EEG patterns using machine leaning. Purpose of the practical part is to create a brain-computer interface that will be able to control a smart home environment. As a first step, we investigate the generalizability of different classification methods, conducting a preliminary study on two public datasets of brain encephalographic data. The obtained accuracy level of classification on 9 different subjects was similar and, in some cases, superior to the reported state of the art. Having achieved relatively good offline classification results during our study, we move on to the last part, designing and implementing an online BCI system using Python. Our system consists of three modules. The first module communicates with the MUSE (a low-cost EEG device) to acquire the EEG signals in real time, the second module process those signals using machine learning techniques and trains a learning model. The model is used by the third module, that takes control of cloud-based home automation devices. Experiments using the MUSE resulted in significantly lower classification results and revealed the limitations of the low-cost EEG signal acquisition device for online BCIs

    Методы классификации ЭЭГ-паттернов воображаемых движений

    Get PDF
    Рассматриваются наиболее перспективные методы классификации электроэнцефалографических сигналов при разработке неинвазивных интерфейсов мозг–компьютер и теоретических подходов для успешной классификации электроэнцефалографических паттернов. Приводится обзор работ, использующих для классификации риманову геометрию, методы глубокого обучения и различные варианты предобработки и кластеризации электроэнцефалографических сигналов, например общего пространственного фильтра. Среди прочих подходов предобработка электроэнцефалографических сигналов с применением общего пространственного фильтра часто используется как в офлайн, так и в онлайн режимах. Согласно исследованиям последних лет сочетание общего пространственного фильтра, линейного дискриминантного анализа, метода опорных векторов и нейронной сети с обратным распространением ошибки позволило достигнуть 91% точности при двухклассовой классификации с обратной связью в виде управления экзоскелетом. Исследований по использованию римановой геометрии в условиях онлайн очень мало, и на данный момент наилучшая точность при двухклассовой классификации составляет 69,3%. При этом в офлайн тестировании средний процент классификации в рассмотренных статьях для подходов с применением общего пространственного фильтра – 77,5±5,8%, сетей глубокого обучения – 81,7±4,7%, римановой геометрии – 90,2±6,6%. За счет нелинейных преобразований методы, основанные на римановой геометрии, а также на применении глубоких нейронных сетей сложной архитектуры, обеспечивают большую точность и способность к извлечению полезной информации из сигнала по сравнению с линейным преобразованием общего пространственного фильтра. Однако в условиях реального времени важна не только точность, но и минимальная временная задержка. Здесь преимущество может быть за подходами с использованием преобразования общего пространственного фильтра и римановой геометрии с временной задержкой менее 500 мс

    Методы классификации ЭЭГ-паттернов воображаемых движений

    Get PDF
    The review focuses on the most promising methods for classifying EEG signals for non-invasive BCIs and theoretical approaches for the successful classification of EEG patterns. The paper provides an overview of articles using Riemannian geometry, deep learning methods and various options for preprocessing and "clustering" EEG signals, for example, common-spatial pattern (CSP). Among other approaches, pre-processing of EEG signals using CSP is often used, both offline and online. The combination of CSP, linear discriminant analysis, support vector machine and neural network (BPNN) made it possible to achieve 91% accuracy for binary classification with exoskeleton control as a feedback. There is very little work on the use of Riemannian geometry online and the best accuracy achieved so far for a binary classification problem is 69.3% in the work. At the same time, in offline testing, the average percentage of correct classification in the considered articles for approaches with CSP – 77.5 ± 5.8%, deep learning networks – 81.7 ± 4.7%, Riemannian geometry – 90.2 ± 6.6%. Due to nonlinear transformations, Riemannian geometry-based approaches and complex deep neural networks provide higher accuracy and better extract of useful information from raw EEG recordings rather than linear CSP transformation. However, in real-time setup, not only accuracy is important, but also a minimum time delay. Therefore, approaches using the CSP transformation and Riemannian geometry with a time delay of less than 500 ms may be in the future advantage.Рассматриваются наиболее перспективные методы классификации электроэнцефалографических сигналов при разработке неинвазивных интерфейсов мозг–компьютер и теоретических подходов для успешной классификации электроэнцефалографических паттернов. Приводится обзор работ, использующих для классификации риманову геометрию, методы глубокого обучения и различные варианты предобработки и кластеризации электроэнцефалографических сигналов, например общего пространственного фильтра. Среди прочих подходов предобработка электроэнцефалографических сигналов с применением общего пространственного фильтра часто используется как в офлайн, так и в онлайн режимах. Согласно исследованиям последних лет сочетание общего пространственного фильтра, линейного дискриминантного анализа, метода опорных векторов и нейронной сети с обратным распространением ошибки позволило достигнуть 91% точности при двухклассовой классификации с обратной связью в виде управления экзоскелетом. Исследований по использованию римановой геометрии в условиях онлайн очень мало, и на данный момент наилучшая точность при двухклассовой классификации составляет 69,3%. При этом в офлайн тестировании средний процент классификации в рассмотренных статьях для подходов с применением общего пространственного фильтра – 77,5±5,8%, сетей глубокого обучения – 81,7±4,7%, римановой геометрии – 90,2±6,6%. За счет нелинейных преобразований методы, основанные на римановой геометрии, а также на применении глубоких нейронных сетей сложной архитектуры, обеспечивают большую точность и способность к извлечению полезной информации из сигнала по сравнению с линейным преобразованием общего пространственного фильтра. Однако в условиях реального времени важна не только точность, но и минимальная временная задержка. Здесь преимущество может быть за подходами с использованием преобразования общего пространственного фильтра и римановой геометрии с временной задержкой менее 500 мс

    Smart Bagged Tree-based Classifier optimized by Random Forests (SBT-RF) to Classify Brain- Machine Interface Data

    Get PDF
    Brain-Computer Interface (BCI) is a new technology that uses electrodes and sensors to connect machines and computers with the human brain to improve a person\u27s mental performance. Also, human intentions and thoughts are analyzed and recognized using BCI, which is then translated into Electroencephalogram (EEG) signals. However, certain brain signals may contain redundant information, making classification ineffective. Therefore, relevant characteristics are essential for enhancing classification performance. . Thus, feature selection has been employed to eliminate redundant data before sorting to reduce computation time. BCI Competition III Dataset Iva was used to investigate the efficacy of the proposed system. A Smart Bagged Tree-based Classifier (SBT-RF) technique is presented to determine the importance of the features for selecting and classifying the data. As a result, SBT-RF is better at improving the mean accuracy of the dataset. It also decreases computation cost and training time and increases prediction speed. Furthermore, fewer features mean fewer electrodes, thus lowering the risk of damage to the brain. The proposed algorithm has the greatest average accuracy of ~98% compared to other relevant algorithms in the literature. SBT-RF is compared to state-of-the-art algorithms based on the following performance metrics: Confusion Matrix, ROC-AUC, F1-Score, Training Time, Prediction speed, and Accuracy

    Feature Extraction Method Based on Filter Banks and Riemannian Tangent Space in Motor-Imagery BCI.

    Get PDF
    Optimal feature extraction for multi-category motor imagery brain-computer interfaces (MI-BCIs) is a research hotspot. The common spatial pattern (CSP) algorithm is one of the most widely used methods in MI-BCIs. However, its performance is adversely affected by variance in the operational frequency band and noise interference. Furthermore, the performance of CSP is not satisfactory when addressing multi-category classification problems. In this work, we propose a fusion method combining Filter Banks and Riemannian Tangent Space (FBRTS) in multiple time windows. FBRTS uses multiple filter banks to overcome the problem of variance in the operational frequency band. It also applies the Riemannian method to the covariance matrix extracted by the spatial filter to obtain more robust features in order to overcome the problem of noise interference. In addition, we use a One-Versus-Rest support vector machine (OVR-SVM) model to classify multi-category features. We evaluate our FBRTS method using BCI competition IV dataset 2a and 2b. The experimental results show that the average classification accuracy of our FBRTS method is 77.7% and 86.9% in datasets 2a and 2b respectively. By analyzing the influence of the different numbers of filter banks and time windows on the performance of our FBRTS method, we can identify the optimal number of filter banks and time windows. Additionally, our FBRTS method can obtain more distinctive features than the filter banks common spatial pattern (FBCSP) method in two-dimensional embedding space. These results show that our proposed method can improve the performance of MI-BCIs

    An Approach of One-vs-Rest Filter Bank Common Spatial Pattern and Spiking Neural Networks for Multiple Motor Imagery Decoding

    Get PDF
    Motor imagery (MI) is a typical BCI paradigm and has been widely applied into many aspects (e.g. brain-driven wheelchair and motor function rehabilitation training). Although significant achievements have been achieved, multiple motor imagery decoding is still unsatisfactory. To deal with this challenging issue, firstly, a segment of electroencephalogram was extracted and preprocessed. Secondly, we applied a filter bank common spatial pattern (FBCSP) with one-vs-rest (OVR) strategy to extract the spatio-temporal-frequency features of multiple MI. Thirdly, the F-score was employed to optimise and select these features. Finally, the optimized features were fed to the spiking neural networks (SNN) for classification. Evaluation was conducted on two public multiple MI datasets (Dataset IIIa of the BCI competition III and Dataset IIa of the BCI competition IV). Experimental results showed that the average accuracy of the proposed framework reached up to 90.09% (kappa: 0.868) and 81.33% (kappa: 0.751) on the two public datasets, respectively. The achieved performance (accuracy and kappa) was comparable to the best one of the compared methods. This study demonstrated that the proposed method can be used as an alternative approach for multiple MI decoding and it provided a potential solution for online multiple MI detection

    Subject-Independent Detection of Yes/No Decisions Using EEG Recordings During Motor Imagery Tasks: A Novel Machine-Learning Approach with Fine-Graded EEG Spectrum

    Get PDF
    The classification of sensorimotor rhythms in electroencephalography signals can enable paralyzed individuals, for example, to make yes/no decisions. In practice, these approaches are hard to implement due to the variability of electroencephalography signals between and within subjects. Therefore, we report a novel and fast machine learning model, meeting the need for efficiency and reliability as well as low calibration and training time. Our model extracts finely graded frequency bands from motor imagery electroencephalography data by using power spectral density and training a random forest algorithm for classification. The goal was to create a non-invasive generalizable method by training the algorithm with subject-independent EEG data. We evaluate our approach using one of the currently largest publicly available electroencephalography datasets. With a balanced accuracy of 73.94%, our novel algorithm outperforms other state-of-the-art non-subject-dependent algorithms

    Pseudo-online Detection and Classification for Upper-limb Movements from Scalp Electroencephalogram

    Get PDF
    Stroke has been a significant healthcare issue worldwide, leading to motor impairment and complicated rehabilitation procedures, which often last for years after lesion. In recent years, brain-computer interface (BCI) research shed some light on new approaches for motor ability recovery and potential neural plasticity inducement for stroke patients. Electroencephalogram (EEG) is widely used in BCI to measure brain activity. In this thesis study, nine healthy participants were recruited to perform four movements in a self-initiated manner, including left wrist extension (WE_L), right wrist extension (WE_R), left index finger extension (IE_L), and right index finger extension (IE_R). A hierarchical structure was proposed first to detect movement intentions from the rest state and then classify different movement types. Movement-related cortical potential (MRCP) and sensorimotor rhythm (SMR) were believed to associate with movement intention generation in human EEG. Thus, three frequency bands of EEG (0.05-5Hz, 5-40Hz, 0.05-40Hz) containing MRCP or SMR were investigated to provide features for detection and classification algorithms. In detection, a majority voting-based ensemble learning method was proposed to integrate the strongness of three algorithms, including support vector machine (SVM), EEGNET, and Riemannian feature-based SVM. The proposed method achieved an average true positive rate (TPR) of 79.6% ± 8.8%, false positives per minute (FPs/min) as 3.1 ± 1.2 within a latency of 91.4 ± 111.9ms. For classification, an adaptive boosting-based ensemble learning algorithm was proposed to classify movement pairs and four movements in pseudo-online and time-locked analyses. As a result, It proved the feasibility of classifying movements in different arms with higher than significant chance level accuracy. In summary, the proposed system offered a novel solution to decode upper-limb movements for rehabilitation-aimed BCI
    corecore