2,114 research outputs found

    A core eating network and its modulations underlie diverse eating phenomena

    Get PDF
    We propose that a core eating network and its modulations account for much of what is currently known about the neural activity underlying a wide range of eating phenomena in humans (excluding homeostasis and related phenomena). The core eating network is closely adapted from a network that Kaye, Fudge, and Paulus (2009) proposed to explain the neurocircuitry of eating, including a ventral reward pathway and a dorsal control pathway. In a review across multiple literatures that focuses on experiments using functional Magnetic Resonance Imaging (fMRI), we first show that neural responses to food cues, such as food pictures, utilize the same core eating network as eating. Consistent with the theoretical perspective of grounded cognition, food cues activate eating simulations that produce reward predictions about a perceived food and potentially motivate its consumption. Reviewing additional literatures, we then illustrate how various factors modulate the core eating network, increasing and/or decreasing activity in subsets of its neural areas. These modulating factors include food significance (palatability, hunger), body mass index (BMI, overweight/obesity), eating disorders (anorexia nervosa, bulimia nervosa, binge eating), and various eating goals (losing weight, hedonic pleasure, healthy living). By viewing all these phenomena as modulating a core eating network, it becomes possible to understand how they are related to one another within this common theoretical framework. Finally, we discuss future directions for better establishing the core eating network, its modulations, and their implications for behavior

    Neural Dynamics Underlying Impaired Autonomic and Conditioned Responses Following Amygdala and Orbitofrontal Lesions

    Full text link
    A neural model is presented that explains how outcome-specific learning modulates affect, decision-making and Pavlovian conditioned approach responses. The model addresses how brain regions responsible for affective learning and habit learning interact, and answers a central question: What are the relative contributions of the amygdala and orbitofrontal cortex to emotion and behavior? In the model, the amygdala calculates outcome value while the orbitofrontal cortex influences attention and conditioned responding by assigning value information to stimuli. Model simulations replicate autonomic, electrophysiological, and behavioral data associated with three tasks commonly used to assay these phenomena: Food consumption, Pavlovian conditioning, and visual discrimination. Interactions of the basal ganglia and amygdala with sensory and orbitofrontal cortices enable the model to replicate the complex pattern of spared and impaired behavioral and emotional capacities seen following lesions of the amygdala and orbitofrontal cortex.National Science Foundation (SBE-0354378; IIS-97-20333); Office of Naval Research (N00014-01-1-0624); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Institutes of Health (R29-DC02952

    Punishment-related memory-guided attention: Neural dynamics of perceptual modulation

    Get PDF
    Remembering the outcomes of past experiences allows us to generate future expectations and shape selection in the long-term. A growing number of studies has shown that learned positive reward values impact spatial memory-based attentional biases on perception. However, whether memory-driven attentional biases extend to punishment-related values has received comparatively less attention. Here, we manipulated whether recent spatial contextual memories became associated with successful avoidance of punishment (potential monetary loss). Behavioural and electrophysiological measures were collected from 27 participants during a subsequent memory-based attention task, in which we tested for the effect of punishment avoidance associations. Punishment avoidance significantly amplified effects of spatial contextual memories on visual search processes within natural scenes. Compared to non-associated scenes, contextual memories paired with punishment avoidance lead to faster responses to targets presented at remembered locations. Event-related potentials elicited by target stimuli revealed that acquired motivational value of specific spatial locations, by virtue of their association with past avoidance of punishment, dynamically affected neural signatures of early visual processing (indexed by larger P1 and earlier N1 potentials) and target selection (as indicated by reduced N2pc potentials). The present results extend our understanding of how memory, attention, and punishment-related mechanisms interact to optimize perceptual decision in real world environmentsThis research was supported by a Project Grant to S.D. from the ConsellerĂ­a de Cultura, EducaciĂłn e OrdenaciĂłn Universitaria, Xunta de Galicia, Spain (EM2012/017). S.S-S was supported by a grant for predoctoral contracts from the Spanish Ministry of Economy and Competitiveness, Spain (BES-2016-076298). A.C.N. is supported by Wellcome Trust Senior Investigator Award, United Kingdom (104571/Z/14/Z)S

    The impact of reward value on early sensory processing and its interaction with selective attention

    Get PDF
    Reward value affects the earliest stages of sensory perception. Whereas a host of previous studies have investigated the underlying mechanisms of reward-driven modulation of visual perception, reward effects in other sensory modalities have remained underexplored. Specifically, it has remained unknown how reward signals should be coordinated and communicated across sensory modalities. The current PhD thesis aimed to gain insight into the underlying mechanisms of reward-driven modulation of perception and its interaction with attention across sensory modalities. To this end, three experiments were conducted to identify the behavioral and electrophysiological correlates of reward effects. In Study 1, we found that high reward, task-irrelevant visual cues (intra-modal) elicited an early suppression of visual event-related potentials (ERPs). High reward auditory cues (cross-modal), on the other hand, led to a later modulation of visual ERPs and facilitated behavioral performance. Study 2 tested the dependence of reward effects on the spatial and temporal arrangement of intra-modal and cross-modal cues relative to the target, and showed that each reward cue maximally exerts its effect under a specific size of attentional focus. Study 3 explicitly manipulated the spatial attention and tested how reward associations of an audiovisual stimulus influence the allocation of attention. We found that auditory rewards enhanced the attentional modulation of both visual and auditory ERPs. Interestingly, although visual rewards did not lead to a distinguishable ERP modulation, they led to strong modulations when they were combined with auditory rewards, suggesting that integration across modalities boosts the reward effects. Taken together, the current PhD thesis identified the behavioral and neural signatures of reward-driven modulation of perception under different modes of reward signaling and different degrees of attentional engagement. Our findings inspire a two-stage model of reward processing, with local, intra-modal reward effects occurring at an early stage and long-range, multimodal reward effects arising at a later stage. Cross-modal reward signals have important ramifications for clinical applications where the impaired function of one sense can be rehabilitated by motivational signals conveyed through another sensory modality.2021-11-2

    Dopaminergic and Non-Dopaminergic Value Systems in Conditioning and Outcome-Specific Revaluation

    Full text link
    Animals are motivated to choose environmental options that can best satisfy current needs. To explain such choices, this paper introduces the MOTIVATOR (Matching Objects To Internal Values Triggers Option Revaluations) neural model. MOTIVATOR describes cognitiveemotional interactions between higher-order sensory cortices and an evaluative neuraxis composed of the hypothalamus, amygdala, and orbitofrontal cortex. Given a conditioned stimulus (CS), the model amygdala and lateral hypothalamus interact to calculate the expected current value of the subjective outcome that the CS predicts, constrained by the current state of deprivation or satiation. The amygdala relays the expected value information to orbitofrontal cells that receive inputs from anterior inferotemporal cells, and medial orbitofrontal cells that receive inputs from rhinal cortex. The activations of these orbitofrontal cells code the subjective values of objects. These values guide behavioral choices. The model basal ganglia detect errors in CS-specific predictions of the value and timing of rewards. Excitatory inputs from the pedunculopontine nucleus interact with timed inhibitory inputs from model striosomes in the ventral striatum to regulate dopamine burst and dip responses from cells in the substantia nigra pars compacta and ventral tegmental area. Learning in cortical and striatal regions is strongly modulated by dopamine. The model is used to address tasks that examine food-specific satiety, Pavlovian conditioning, reinforcer devaluation, and simultaneous visual discrimination. Model simulations successfully reproduce discharge dynamics of known cell types, including signals that predict saccadic reaction times and CS-dependent changes in systolic blood pressure.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Institutes of Health (R29-DC02952, R01-DC007683); National Science Foundation (IIS-97-20333, SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies

    Get PDF
    Several studies have used neuroimaging techniques to investigate brain correlates of the attentional modulation of pain. Although these studies have advanced the knowledge in the field, important confounding factors such as imprecise theoretical definitions of attention, incomplete operationalization of the construct under exam, and limitations of techniques relying on measuring regional changes in cerebral blood flow have hampered the potential relevance of the conclusions. Here, we first provide an overview of the major theories of attention and of attention in the study of pain to bridge theory and experimental results. We conclude that load and motivational/affective theories are particularly relevant to study the attentional modulation of pain and should be carefully integrated in functional neuroimaging studies. Then, we summarize previous findings and discuss the possible neural correlates of the attentional modulation of pain. We discuss whether classical functional neuroimaging techniques are suitable to measure the effect of a fluctuating process like attention, and in which circumstances functional neuroimaging can be reliably used to measure the attentional modulation of pain. Finally, we argue that the analysis of brain networks and spontaneous oscillations may be a crucial future development in the study of attentional modulation of pain, and why the interplay between attention and pain, as examined so far, may rely on neural mechanisms shared with other sensory modalities

    What a cute baby! Preliminary evidence from a fMRI study for the association between mothers ? neural responses to infant faces and activation of the parental care system

    Get PDF
    Infant facial characteristics, i.e., baby schema, are thought to automatically elicit parenting behavior and affective orientation toward infants. Only a few studies, conducted in non-parents, have directly examined the neural underpinnings of this baby schema effect by manipulating distinctiveness of baby schema in infant faces. This study aims to further our understanding of the intuitive nature of parenting, by studying the baby schema effect in mothers of young children (at least one child aged between 2 and 6 years old). Functional magnetic resonance imaging (fMRI) was used to examine mothers’ (N = 23) neural responses to unfamiliar infant faces varying in distinctiveness of baby schema. Also, it was studied how this neural activation to infant faces was associated with maternal nurturance. Results revealed that infant faces elicited widespread activation in bilateral visual cortices, the hippocampus, sensory-motor areas, parietal and frontal cortices, and the insula, which was not modulated by the distinctiveness of baby schema in the infant faces. Furthermore, higher self-reported maternal nurturance was related to increased neural responses to infant faces in the putamen and amygdala, brain regions known to be associated with reward and salience processing. These findings could suggest that in our small sample of mothers some of the core networks involved in reward and salience processing might be less sensitive to variation in distinctiveness of baby schema. Also, unfamiliar infant faces seem to be rewarding only for mothers who report high nurturance. These findings should be considered preliminary, because they need to be replicated in studies with larger samples

    Motivation and visual attention in adolescents and adults

    Get PDF
    This thesis explores how the motivation to process a visual stimulus influences attentional control. A core aim was to develop and test a motivation-based as opposed to a perception-based explanation for reward association effects on visual selective attention. To do so, in a series of 12 experiments, stimuli were first imbued with a value, reinforced with monetary wins and losses. Then, these same value-associated stimuli were used as distractors in spatial attention paradigms, including flanker and visual search tasks, incentive cues in a simple detection task, or targets in an ensemble perceptual judgment task. Of primary interest were measures of attentional capture by value-laden opposed to neutral stimuli. Taking a developmental approach, in a subset of the experiments value-driven biases in late adolescents compared to adults were also examined while simultaneous electroencephalography was recorded. Collectively, the results from these experiments suggest that the effects of motivational salience are inconsistent with perception-based accounts but can be encompassed in a motivation-based framework that suggests value-associated stimuli compete to alter current goals. This motivation-based model is grounded in the cognitive control literature and posits a competition among potential goals driven by the costs versus benefits of cognitive engagement with stimuli
    • …
    corecore