71,506 research outputs found

    Collaborative Learning of Stochastic Bandits over a Social Network

    Full text link
    We consider a collaborative online learning paradigm, wherein a group of agents connected through a social network are engaged in playing a stochastic multi-armed bandit game. Each time an agent takes an action, the corresponding reward is instantaneously observed by the agent, as well as its neighbours in the social network. We perform a regret analysis of various policies in this collaborative learning setting. A key finding of this paper is that natural extensions of widely-studied single agent learning policies to the network setting need not perform well in terms of regret. In particular, we identify a class of non-altruistic and individually consistent policies, and argue by deriving regret lower bounds that they are liable to suffer a large regret in the networked setting. We also show that the learning performance can be substantially improved if the agents exploit the structure of the network, and develop a simple learning algorithm based on dominating sets of the network. Specifically, we first consider a star network, which is a common motif in hierarchical social networks, and show analytically that the hub agent can be used as an information sink to expedite learning and improve the overall regret. We also derive networkwide regret bounds for the algorithm applied to general networks. We conduct numerical experiments on a variety of networks to corroborate our analytical results.Comment: 14 Pages, 6 Figure

    QDQD-Learning: A Collaborative Distributed Strategy for Multi-Agent Reinforcement Learning Through Consensus + Innovations

    Full text link
    The paper considers a class of multi-agent Markov decision processes (MDPs), in which the network agents respond differently (as manifested by the instantaneous one-stage random costs) to a global controlled state and the control actions of a remote controller. The paper investigates a distributed reinforcement learning setup with no prior information on the global state transition and local agent cost statistics. Specifically, with the agents' objective consisting of minimizing a network-averaged infinite horizon discounted cost, the paper proposes a distributed version of QQ-learning, QD\mathcal{QD}-learning, in which the network agents collaborate by means of local processing and mutual information exchange over a sparse (possibly stochastic) communication network to achieve the network goal. Under the assumption that each agent is only aware of its local online cost data and the inter-agent communication network is \emph{weakly} connected, the proposed distributed scheme is almost surely (a.s.) shown to yield asymptotically the desired value function and the optimal stationary control policy at each network agent. The analytical techniques developed in the paper to address the mixed time-scale stochastic dynamics of the \emph{consensus + innovations} form, which arise as a result of the proposed interactive distributed scheme, are of independent interest.Comment: Submitted to the IEEE Transactions on Signal Processing, 33 page

    Consistency in Models for Distributed Learning under Communication Constraints

    Full text link
    Motivated by sensor networks and other distributed settings, several models for distributed learning are presented. The models differ from classical works in statistical pattern recognition by allocating observations of an independent and identically distributed (i.i.d.) sampling process amongst members of a network of simple learning agents. The agents are limited in their ability to communicate to a central fusion center and thus, the amount of information available for use in classification or regression is constrained. For several basic communication models in both the binary classification and regression frameworks, we question the existence of agent decision rules and fusion rules that result in a universally consistent ensemble. The answers to this question present new issues to consider with regard to universal consistency. Insofar as these models present a useful picture of distributed scenarios, this paper addresses the issue of whether or not the guarantees provided by Stone's Theorem in centralized environments hold in distributed settings.Comment: To appear in the IEEE Transactions on Information Theor
    • …
    corecore