758 research outputs found

    Video post processing architectures

    Get PDF

    Fast search algorithms for digital video coding

    Get PDF
    PhD ThesisMotion Estimation algorithm is one of the important issues in video coding standards such as ISO MPEG-1/2 and ITU-T H.263. These international standards regularly use a conventional Full Search (FS) Algorithm to estimate the motion of pixels between pairs of image blocks. Since a FS method requires intensive computations and the distortion function needs to be evaluated many times for each target block. the process is very time consuming. To alleviate this acute problem, new search algorithms, Orthogonal Logarithmic Search (OLS) and Diagonal Logarithmic Search (DLS), have been designed and implemented. The performance of the algorithms are evaluated by using standard 176x 144 pixels quarter common intermediate format (QCIF) benchmark video sequences and the results are compared to the traditional well-known FS Algorithm and a widely used fast search algorithm called the Three Step Search (3SS), The fast search algorithms are known as sub-optimal algorithms as they test only some of the candidate blocks from the search area and choose a match from a subset of blocks. These algorithms can reduce the computational complexity as they do not examine all candidate blocks and hence are algorithmically faster. However, the quality is generally not as good as that of the FS algorithms but can be acceptable in terms of subjective quality. The important metrics, time and Peak Signal to Noise Ratio are used to evaluate the novel algorithms. The results show that the strength of the algorithms lie in their speed of operation as they are much faster than the FS and 3SS. The performance in speed is improved by 85.37% and 22% over the FS and 3SS respectively for the OLS. For the DLS, the speed advantages are 88.77% and 40% over the FS and 3SS. Furthermore, the accuracy of prediction of OLS and DLS are comparahle to the 3SS.Thepsatri Rajabhat University: Royal Thai Government

    Signal Processing and Restoration

    Get PDF

    Exploring information retrieval using image sparse representations:from circuit designs and acquisition processes to specific reconstruction algorithms

    Get PDF
    New advances in the field of image sensors (especially in CMOS technology) tend to question the conventional methods used to acquire the image. Compressive Sensing (CS) plays a major role in this, especially to unclog the Analog to Digital Converters which are generally representing the bottleneck of this type of sensors. In addition, CS eliminates traditional compression processing stages that are performed by embedded digital signal processors dedicated to this purpose. The interest is twofold because it allows both to consistently reduce the amount of data to be converted but also to suppress digital processing performed out of the sensor chip. For the moment, regarding the use of CS in image sensors, the main route of exploration as well as the intended applications aims at reducing power consumption related to these components (i.e. ADC & DSP represent 99% of the total power consumption). More broadly, the paradigm of CS allows to question or at least to extend the Nyquist-Shannon sampling theory. This thesis shows developments in the field of image sensors demonstrating that is possible to consider alternative applications linked to CS. Indeed, advances are presented in the fields of hyperspectral imaging, super-resolution, high dynamic range, high speed and non-uniform sampling. In particular, three research axes have been deepened, aiming to design proper architectures and acquisition processes with their associated reconstruction techniques taking advantage of image sparse representations. How the on-chip implementation of Compressed Sensing can relax sensor constraints, improving the acquisition characteristics (speed, dynamic range, power consumption) ? How CS can be combined with simple analysis to provide useful image features for high level applications (adding semantic information) and improve the reconstructed image quality at a certain compression ratio ? Finally, how CS can improve physical limitations (i.e. spectral sensitivity and pixel pitch) of imaging systems without a major impact neither on the sensing strategy nor on the optical elements involved ? A CMOS image sensor has been developed and manufactured during this Ph.D. to validate concepts such as the High Dynamic Range - CS. A new design approach was employed resulting in innovative solutions for pixels addressing and conversion to perform specific acquisition in a compressed mode. On the other hand, the principle of adaptive CS combined with the non-uniform sampling has been developed. Possible implementations of this type of acquisition are proposed. Finally, preliminary works are exhibited on the use of Liquid Crystal Devices to allow hyperspectral imaging combined with spatial super-resolution. The conclusion of this study can be summarized as follows: CS must now be considered as a toolbox for defining more easily compromises between the different characteristics of the sensors: integration time, converters speed, dynamic range, resolution and digital processing resources. However, if CS relaxes some material constraints at the sensor level, it is possible that the collected data are difficult to interpret and process at the decoder side, involving massive computational resources compared to so-called conventional techniques. The application field is wide, implying that for a targeted application, an accurate characterization of the constraints concerning both the sensor (encoder), but also the decoder need to be defined

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation

    Get PDF
    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation

    Advances in video motion analysis research for mature and emerging application areas

    Get PDF

    Model-Based Robot Control and Multiprocessor Implementation

    Get PDF
    Model-based control of robot manipulators has been gaining momentum in recent years. Unfortunately there are very few experimental validations to accompany simulation results and as such majority of conclusions drawn lack the credibility associated with the real control implementation

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field
    corecore