10,915 research outputs found

    Airborne chemical sensing with mobile robots

    Get PDF
    Airborne chemical sensing with mobile robots has been an active research areasince the beginning of the 1990s. This article presents a review of research work in this field,including gas distribution mapping, trail guidance, and the different subtasks of gas sourcelocalisation. Due to the difficulty of modelling gas distribution in a real world environmentwith currently available simulation techniques, we focus largely on experimental work and donot consider publications that are purely based on simulations

    Studies of the effects of gravitational and inertial forces on cardiovascular and respiratory dynamics Semiannual status report, period ending 1 Oct. 1968

    Get PDF
    Gravitational and inertial force environment effects on cardiovascular and respiratory functions in dogs and chimpanzee

    AN INFORMATION THEORETIC APPROACH TO INTERACTING MULTIPLE MODEL ESTIMATION FOR AUTONOMOUS UNDERWATER VEHICLES

    Get PDF
    Accurate and robust autonomous underwater navigation (AUV) requires the fundamental task of position estimation in a variety of conditions. Additionally, the U.S. Navy would prefer to have systems that are not dependent on external beacon systems such as global positioning system (GPS), since they are subject to jamming and spoofing and can reduce operational effectiveness. Current methodologies such as Terrain-Aided Navigation (TAN) use exteroceptive imaging sensors for building a local reference position estimate and will not be useful when those sensors are out of range. What is needed are multiple navigation filters where each can be more effective depending on the mission conditions. This thesis investigates how to combine multiple navigation filters to provide a more robust AUV position estimate. The solution presented is to blend two different filtering methodologies utilizing an interacting multiple model (IMM) estimation approach based on an information theoretic framework. The first filter is a model-based Extended Kalman Filter (EKF) that is effective under dead reckoning (DR) conditions. The second is a Particle Filter approach for Active Terrain Aided Navigation (ATAN) that is appropriate when in sensor range. Using data collected at Lake Crescent, Washington, each of the navigation filters are developed with results and then we demonstrate how an IMM information theoretic approach can be used to blend approaches to improve position and orientation estimation.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 171

    Get PDF
    This bibliography lists 186 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1977

    The Neural Correlates of Visuospatial Perceptual and Oculomotor Extrapolation

    Get PDF
    The human visual system must perform complex visuospatial extrapolations (VSE) across space and time in order to extract shape and form from the retinal projection of a cluttered visual environment characterized by occluded surfaces and moving objects. Even if we exclude the temporal dimension, for instance when judging whether an extended finger is pointing towards one object or another, the mechanisms of VSE remain opaque. Here we investigated the neural correlates of VSE using functional magnetic resonance imaging in sixteen human observers while they judged the relative position of, or saccaded to, a (virtual) target defined by the extrapolated path of a pointer. Using whole brain and region of interest (ROI) analyses, we compared the brain activity evoked by these VSE tasks to similar control judgements or eye movements made to explicit (dot) targets that did not require extrapolation. The data show that activity in an occipitotemporal region that included the lateral occipital cortex (LOC) was significantly greater during VSE than during control tasks. A similar, though less pronounced, pattern was also evident in regions of the fronto-parietal cortex that included the frontal eye fields. However, none of the ROIs examined exhibited a significant interaction between target type (extrapolated/explicit) and response type (oculomotor/perceptual). These findings are consistent with a close association between visuoperceptual and oculomotor responses, and highlight a critical role for the LOC in the process of VSE

    Visual motion processing and human tracking behavior

    Full text link
    The accurate visual tracking of a moving object is a human fundamental skill that allows to reduce the relative slip and instability of the object's image on the retina, thus granting a stable, high-quality vision. In order to optimize tracking performance across time, a quick estimate of the object's global motion properties needs to be fed to the oculomotor system and dynamically updated. Concurrently, performance can be greatly improved in terms of latency and accuracy by taking into account predictive cues, especially under variable conditions of visibility and in presence of ambiguous retinal information. Here, we review several recent studies focusing on the integration of retinal and extra-retinal information for the control of human smooth pursuit.By dynamically probing the tracking performance with well established paradigms in the visual perception and oculomotor literature we provide the basis to test theoretical hypotheses within the framework of dynamic probabilistic inference. We will in particular present the applications of these results in light of state-of-the-art computer vision algorithms

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Versatile Multimodality Imaging System Based on Detectorless and Scanless Optical Feedback Interferometry-A Retrospective Overview for A Prospective Vision

    Get PDF
    In this retrospective compendium, we attempt to draw a "fil rouge" along fifteen years of our research in the field of optical feedback interferometry aimed at guiding the readers to the verge of new developments in the field. The general reader will be moved at appreciating the versatility and the still largely uncovered potential of the optical feedback interferometry, for both sensing and imaging applications. By discovering the broad range of available wavelengths (0.4-120 μm), the different types of suitable semiconductor lasers (Fabry-Perot, distributed feedback, vertical-cavity, quantum-cascade), and a number of unconventional tenders in multi-axis displacement, ablation front progression, self-referenced measurements, multispectral, structured light feedback imaging and compressive sensing, the specialist also could find inspirational suggestions to expand his field of research
    corecore