415 research outputs found

    Multi-view image coding with wavelet lifting and in-band disparity compensation

    Get PDF

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF

    Fully Scalable Video Coding Using Redundant-Wavelet Multihypothesis and Motion-Compensated Temporal Filtering

    Get PDF
    In this dissertation, a fully scalable video coding system is proposed. This system achieves full temporal, resolution, and fidelity scalability by combining mesh-based motion-compensated temporal filtering, multihypothesis motion compensation, and an embedded 3D wavelet-coefficient coder. The first major contribution of this work is the introduction of the redundant-wavelet multihypothesis paradigm into motion-compensated temporal filtering, which is achieved by deploying temporal filtering in the domain of a spatially redundant wavelet transform. A regular triangle mesh is used to track motion between frames, and an affine transform between mesh triangles implements motion compensation within a lifting-based temporal transform. Experimental results reveal that the incorporation of redundant-wavelet multihypothesis into mesh-based motion-compensated temporal filtering significantly improves the rate-distortion performance of the scalable coder. The second major contribution is the introduction of a sliding-window implementation of motion-compensated temporal filtering such that video sequences of arbitrarily length may be temporally filtered using a finite-length frame buffer without suffering from severe degradation at buffer boundaries. Finally, as a third major contribution, a novel 3D coder is designed for the coding of the 3D volume of coefficients resulting from the redundant-wavelet based temporal filtering. This coder employs an explicit estimate of the probability of coefficient significance to drive a nonadaptive arithmetic coder, resulting in a simple software implementation. Additionally, the coder offers the possibility of a high degree of vectorization particularly well suited to the data-parallel capabilities of modern general-purpose processors or customized hardware. Results show that the proposed coder yields nearly the same rate-distortion performance as a more complicated coefficient coder considered to be state of the art

    State-of-the-Art and Trends in Scalable Video Compression with Wavelet Based Approaches

    Get PDF
    3noScalable Video Coding (SVC) differs form traditional single point approaches mainly because it allows to encode in a unique bit stream several working points corresponding to different quality, picture size and frame rate. This work describes the current state-of-the-art in SVC, focusing on wavelet based motion-compensated approaches (WSVC). It reviews individual components that have been designed to address the problem over the years and how such components are typically combined to achieve meaningful WSVC architectures. Coding schemes which mainly differ from the space-time order in which the wavelet transforms operate are here compared, discussing strengths and weaknesses of the resulting implementations. An evaluation of the achievable coding performances is provided considering the reference architectures studied and developed by ISO/MPEG in its exploration on WSVC. The paper also attempts to draw a list of major differences between wavelet based solutions and the SVC standard jointly targeted by ITU and ISO/MPEG. A major emphasis is devoted to a promising WSVC solution, named STP-tool, which presents architectural similarities with respect to the SVC standard. The paper ends drawing some evolution trends for WSVC systems and giving insights on video coding applications which could benefit by a wavelet based approach.partially_openpartially_openADAMI N; SIGNORONI. A; R. LEONARDIAdami, Nicola; Signoroni, Alberto; Leonardi, Riccard

    MASCOT : metadata for advanced scalable video coding tools : final report

    Get PDF
    The goal of the MASCOT project was to develop new video coding schemes and tools that provide both an increased coding efficiency as well as extended scalability features compared to technology that was available at the beginning of the project. Towards that goal the following tools would be used: - metadata-based coding tools; - new spatiotemporal decompositions; - new prediction schemes. Although the initial goal was to develop one single codec architecture that was able to combine all new coding tools that were foreseen when the project was formulated, it became clear that this would limit the selection of the new tools. Therefore the consortium decided to develop two codec frameworks within the project, a standard hybrid DCT-based codec and a 3D wavelet-based codec, which together are able to accommodate all tools developed during the course of the project

    Super Resolution of Wavelet-Encoded Images and Videos

    Get PDF
    In this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-encoded images and videos. The goal of multiframe super resolution is to obtain one or more high resolution images by fusing a sequence of degraded or aliased low resolution images of the same scene. Since the low resolution images may be unaligned, a registration step is required before super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet-domain) image registration; then, investigate super resolution. Our motivation for analyzing the image registration and super resolution problems in the wavelet domain is the growing trend in wavelet-encoded imaging, and wavelet-encoding for image/video compression. Due to drawbacks of widely used discrete cosine transform in image and video compression, a considerable amount of literature is devoted to wavelet-based methods. However, since wavelets are shift-variant, existing methods cannot utilize wavelet subbands efficiently. In order to overcome this drawback, we establish and explore the direct relationship between the subbands under a translational shift, for image registration and super resolution. We then employ our devised in-band methodology, in a motion compensated video compression framework, to demonstrate the effective usage of wavelet subbands. Super resolution can also be used as a post-processing step in video compression in order to decrease the size of the video files to be compressed, with downsampling added as a pre-processing step. Therefore, we present a video compression scheme that utilizes super resolution to reconstruct the high frequency information lost during downsampling. In addition, super resolution is a crucial post-processing step for satellite imagery, due to the fact that it is hard to update imaging devices after a satellite is launched. Thus, we also demonstrate the usage of our devised methods in enhancing resolution of pansharpened multispectral images

    Motion Estimation and Compensation in the Redundant Wavelet Domain

    Get PDF
    Despite being the prefered approach for still-image compression for nearly a decade, wavelet-based coding for video has been slow to emerge, due primarily to the fact that the shift variance of the discrete wavelet transform hinders motion estimation and compensation crucial to modern video coders. Recently it has been recognized that a redundant, or overcomplete, wavelet transform is shift invariant and thus permits motion prediction in the wavelet domain. In this dissertation, other uses for the redundancy of overcomplete wavelet transforms in video coding are explored. First, it is demonstrated that the redundant-wavelet domain facilitates the placement of an irregular triangular mesh to video images, thereby exploiting transform redundancy to implement geometries for motion estimation and compensation more general than the traditional block structure widely employed. As the second contribution of this dissertation, a new form of multihypothesis prediction, redundant wavelet multihypothesis, is presented. This new approach to motion estimation and compensation produces motion predictions that are diverse in transform phase to increase prediction accuracy. Finally, it is demonstrated that the proposed redundant-wavelet strategies complement existing advanced video-coding techniques and produce significant performance improvements in a battery of experimental results

    Inter-Resolution Transform for Spatially Scalable Video Coding

    Get PDF
    Spatial scalability of video signals can be achieved with critically sampled spatial wavelet schemes but also with an overcomplete spatial representation. Critically sampled schemes struggle with the problem that critically sampled high-bands are shift-variant. Therefore, efficient motion compensation is challenging. On the other hand, overcomplete representations can be shift-invariant, thus permitting efficient motion compensation in the spatial subbands, but they have to be designed carefully to achieve high compression efficiency. This paper discusses an orthonormal transform for decomposing two different spatial scales of the same image. The transform is such that it minimizes the impact of the quantization noise on the reconstructed video signal at the decoder. Further, we investigate the decorrelation property of the transform. Finally, we compare to the compression efficiency of a Laplacian pyramid, a conventional scheme for an overcomplete representation of images, and observe coding gains up to 1 dB

    A fully scalable wavelet video coding scheme with homologous inter-scale prediction

    Get PDF
    In this paper, we present a fully scalable wavelet-based video coding architecture called STP-Tool, in which motion-compensated temporal-filtered subbands of spatially scaled versions of a video sequence can be used as a base layer for inter-scale predictions. These predictions take place in a pyramidal closed-loop structure between homologous resolution data, i.e., without the need of spatial interpolation. The presented implementation of the STP-Tool architecture is based on the reference software of the Wavelet Video Coding MPEG Ad-Hoc Group. The STP-Tool architecture makes it possible to compensate for some of the typical drawbacks of current wavelet-based scalable video coding architectures and shows interesting objective and visual results even when compared with other wavelet-based or MPEG-4 AVC/H.264-based scalable video coding systems

    Directional Transforms for Video Coding Based on Lifting on Graphs

    Get PDF
    In this work we describe and optimize a general scheme based on lifting transforms on graphs for video coding. A graph is constructed to represent the video signal. Each pixel becomes a node in the graph and links between nodes represent similarity between them. Therefore, spatial neighbors and temporal motion-related pixels can be linked, while nonsimilar pixels (e.g., pixels across an edge) may not be. Then, a lifting-based transform, in which filterin operations are performed using linked nodes, is applied to this graph, leading to a 3-dimensional (spatio-temporal) directional transform which can be viewed as an extension of wavelet transforms for video. The design of the proposed scheme requires four main steps: (i) graph construction, (ii) graph splitting, (iii) filte design, and (iv) extension of the transform to different levels of decomposition. We focus on the optimization of these steps in order to obtain an effective transform for video coding. Furthermore, based on this scheme, we propose a coefficien reordering method and an entropy coder leading to a complete video encoder that achieves better coding performance than a motion compensated temporal filterin wavelet-based encoder and a simple encoder derived from H.264/AVC that makes use of similar tools as our proposed encoder (reference software JM15.1 configu ed to use 1 reference frame, no subpixel motion estimation, 16 Ă— 16 inter and 4 Ă— 4 intra modes).This work was supported in part by NSF under grant CCF-1018977 and by Spanish Ministry of Economy and Competitiveness under grants TEC2014-53390-P and TEC2014-52289-R.Publicad
    • …
    corecore