3,294 research outputs found

    Self-stabilizing TDMA Algorithms for Wireless Ad-hoc Networks without External Reference

    Full text link
    Time division multiple access (TDMA) is a method for sharing communication media. In wireless communications, TDMA algorithms often divide the radio time into timeslots of uniform size, ξ\xi, and then combine them into frames of uniform size, τ\tau. We consider TDMA algorithms that allocate at least one timeslot in every frame to every node. Given a maximal node degree, δ\delta, and no access to external references for collision detection, time or position, we consider the problem of collision-free self-stabilizing TDMA algorithms that use constant frame size. We demonstrate that this problem has no solution when the frame size is τ<max{2δ,χ2}\tau < \max\{2\delta,\chi_2\}, where χ2\chi_2 is the chromatic number for distance-22 vertex coloring. As a complement to this lower bound, we focus on proving the existence of collision-free self-stabilizing TDMA algorithms that use constant frame size of τ\tau. We consider basic settings (no hardware support for collision detection and no prior clock synchronization), and the collision of concurrent transmissions from transmitters that are at most two hops apart. In the context of self-stabilizing systems that have no external reference, we are the first to study this problem (to the best of our knowledge), and use simulations to show convergence even with computation time uncertainties

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    D-SLATS: Distributed Simultaneous Localization and Time Synchronization

    Full text link
    Through the last decade, we have witnessed a surge of Internet of Things (IoT) devices, and with that a greater need to choreograph their actions across both time and space. Although these two problems, namely time synchronization and localization, share many aspects in common, they are traditionally treated separately or combined on centralized approaches that results in an ineffcient use of resources, or in solutions that are not scalable in terms of the number of IoT devices. Therefore, we propose D-SLATS, a framework comprised of three different and independent algorithms to jointly solve time synchronization and localization problems in a distributed fashion. The First two algorithms are based mainly on the distributed Extended Kalman Filter (EKF) whereas the third one uses optimization techniques. No fusion center is required, and the devices only communicate with their neighbors. The proposed methods are evaluated on custom Ultra-Wideband communication Testbed and a quadrotor, representing a network of both static and mobile nodes. Our algorithms achieve up to three microseconds time synchronization accuracy and 30 cm localization error

    Power Considerations for Sensor Networks

    Get PDF

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Dynamic Resource Reservation and Connectivity Tracking to Support Real-Time Communication among Mobile Units

    Get PDF
    Wireless communication technology is spreading quickly in almost all the information technology areas as a consequence of a gradual enhancement in quality and security of the communication, together with a decrease in the related costs. This facilitates the development of relatively low-cost teams of autonomous (robotic) mobile units that cooperate to achieve a common goal. Providing real-time communication among the team units is highly desirable for guaranteeing a predictable behavior in those applications in which the robots have to operate autonomously in unstructured environments. This paper proposes a MAC protocol for wireless communication that supports dynamic resource reservation and topology management for relatively small networks of cooperative units (10–20 units). The protocol uses a slotted time-triggered medium access transmission control that is collision-free, even in the presence of hidden nodes. The transmissions are scheduled according to the earliest deadline first scheduling policy. An adequate admission control guarantees the timing constraints of the team communication requirements, including when new nodes dynamically join or leave the team. The paper describes the protocol focusing on the consensus procedure that supports coherent changes in the global system. We also introduce a distributed connectivity tracking mechanism that is used to detect network partition and absent or crashed nodes. Finally, a set of simulation results are shown that illustrate the effectiveness of the proposed approaches

    Wireless Medical Sensor Networks: Design Requirements and Enabling Technologies

    Get PDF
    This article analyzes wireless communication protocols that could be used in healthcare environments (e.g., hospitals and small clinics) to transfer real-time medical information obtained from noninvasive sensors. For this purpose the features of the three currently most widely used protocols—namely, Bluetooth® (IEEE 802.15.1), ZigBee (IEEE 802.15.4), and Wi-Fi (IEEE 802.11)—are evaluated and compared. The important features under consideration include data bandwidth, frequency band, maximum transmission distance, encryption and authentication methods, power consumption, and current applications. In addition, an overview of network requirements with respect to medical sensor features, patient safety and patient data privacy, quality of service, and interoperability between other sensors is briefly presented. Sensor power consumption is also discussed because it is considered one of the main obstacles for wider adoption of wireless networks in medical applications. The outcome of this assessment will be a useful tool in the hands of biomedical engineering researchers. It will provide parameters to select the most effective combination of protocols to implement a specific wireless network of noninvasive medical sensors to monitor patients remotely in the hospital or at home
    corecore