104 research outputs found

    Inner Space Preserving Generative Pose Machine

    Full text link
    Image-based generative methods, such as generative adversarial networks (GANs) have already been able to generate realistic images with much context control, specially when they are conditioned. However, most successful frameworks share a common procedure which performs an image-to-image translation with pose of figures in the image untouched. When the objective is reposing a figure in an image while preserving the rest of the image, the state-of-the-art mainly assumes a single rigid body with simple background and limited pose shift, which can hardly be extended to the images under normal settings. In this paper, we introduce an image "inner space" preserving model that assigns an interpretable low-dimensional pose descriptor (LDPD) to an articulated figure in the image. Figure reposing is then generated by passing the LDPD and the original image through multi-stage augmented hourglass networks in a conditional GAN structure, called inner space preserving generative pose machine (ISP-GPM). We evaluated ISP-GPM on reposing human figures, which are highly articulated with versatile variations. Test of a state-of-the-art pose estimator on our reposed dataset gave an accuracy over 80% on PCK0.5 metric. The results also elucidated that our ISP-GPM is able to preserve the background with high accuracy while reasonably recovering the area blocked by the figure to be reposed.Comment: http://www.northeastern.edu/ostadabbas/2018/07/23/inner-space-preserving-generative-pose-machine

    Probabilistic and Deep Learning Algorithms for the Analysis of Imagery Data

    Get PDF
    Accurate object classification is a challenging problem for various low to high resolution imagery data. This applies to both natural as well as synthetic image datasets. However, each object recognition dataset poses its own distinct set of domain-specific problems. In order to address these issues, we need to devise intelligent learning algorithms which require a deep understanding and careful analysis of the feature space. In this thesis, we introduce three new learning frameworks for the analysis of both airborne images (NAIP dataset) and handwritten digit datasets without and with noise (MNIST and n-MNIST respectively). First, we propose a probabilistic framework for the analysis of the NAIP dataset which includes (1) an unsupervised segmentation module based on the Statistical Region Merging algorithm, (2) a feature extraction module that extracts a set of standard hand-crafted texture features from the images, (3) a supervised classification algorithm based on Feedforward Backpropagation Neural Networks, and (4) a structured prediction framework using Conditional Random Fields that integrates the results of the segmentation and classification modules into a single composite model to generate the final class labels. Next, we introduce two new datasets SAT-4 and SAT-6 sampled from the NAIP imagery and use them to evaluate a multitude of Deep Learning algorithms including Deep Belief Networks (DBN), Convolutional Neural Networks (CNN) and Stacked Autoencoders (SAE) for generating class labels. Finally, we propose a learning framework by integrating hand-crafted texture features with a DBN. A DBN uses an unsupervised pre-training phase to perform initialization of the parameters of a Feedforward Backpropagation Neural Network to a global error basin which can then be improved using a round of supervised fine-tuning using Feedforward Backpropagation Neural Networks. These networks can subsequently be used for classification. In the following discussion, we show that the integration of hand-crafted features with DBN shows significant improvement in performance as compared to traditional DBN models which take raw image pixels as input. We also investigate why this integration proves to be particularly useful for aerial datasets using a statistical analysis based on Distribution Separability Criterion. Then we introduce a new dataset called noisy-MNIST (n-MNIST) by adding (1) additive white gaussian noise (AWGN), (2) motion blur and (3) Reduced contrast and AWGN to the MNIST dataset and present a learning algorithm by combining probabilistic quadtrees and Deep Belief Networks. This dynamic integration of the Deep Belief Network with the probabilistic quadtrees provide significant improvement over traditional DBN models on both the MNIST and the n-MNIST datasets. Finally, we extend our experiments on aerial imagery to the class of general texture images and present a theoretical analysis of Deep Neural Networks applied to texture classification. We derive the size of the feature space of textural features and also derive the Vapnik-Chervonenkis dimension of certain classes of Neural Networks. We also derive some useful results on intrinsic dimension and relative contrast of texture datasets and use these to highlight the differences between texture datasets and general object recognition datasets

    Anomaly Detection on the Rail Lines Using Semantic Segmentation and Self-supervised Learning

    Get PDF
    This paper introduces a novel application of anomaly detection on the rail lines using deep learning methods on camera data. We propose a two-fold approach for identifying irregularities like coal, dirt, and obstacles on the rail tracks. In the first stage, a binary semantic segmentation is performed to extract only the rails from the background. In the second stage, we deploy our proposed autoencoder utilizing the self-supervised learning techniques to address the unavailability of labelled anomalies. The extracted rails from stage one are divided into multiple patches and are fed to the autoencoder, which is trained to reconstruct the non-anomalous data only. Hence, during the inference, the regeneration of images with any abnormalities produces a larger reconstruction error. Applying a predefined threshold to the reconstruction errors can detect an anomaly on a rail track. Stage one, rail extracting network achieves a high value of 52:78% mean Intersection over Union (mIoU). The second stage autoencoder network converges well on the training data. Finally, we evaluate our two-fold approach on real scenario test images, no false positives or false negativ

    Autoencoding sensory substitution

    Get PDF
    Tens of millions of people live blind, and their number is ever increasing. Visual-to-auditory sensory substitution (SS) encompasses a family of cheap, generic solutions to assist the visually impaired by conveying visual information through sound. The required SS training is lengthy: months of effort is necessary to reach a practical level of adaptation. There are two reasons for the tedious training process: the elongated substituting audio signal, and the disregard for the compressive characteristics of the human hearing system. To overcome these obstacles, we developed a novel class of SS methods, by training deep recurrent autoencoders for image-to-sound conversion. We successfully trained deep learning models on different datasets to execute visual-to-auditory stimulus conversion. By constraining the visual space, we demonstrated the viability of shortened substituting audio signals, while proposing mechanisms, such as the integration of computational hearing models, to optimally convey visual features in the substituting stimulus as perceptually discernible auditory components. We tested our approach in two separate cases. In the first experiment, the author went blindfolded for 5 days, while performing SS training on hand posture discrimination. The second experiment assessed the accuracy of reaching movements towards objects on a table. In both test cases, above-chance-level accuracy was attained after a few hours of training. Our novel SS architecture broadens the horizon of rehabilitation methods engineered for the visually impaired. Further improvements on the proposed model shall yield hastened rehabilitation of the blind and a wider adaptation of SS devices as a consequence
    • …
    corecore