2,806 research outputs found

    Motion planning in quantum control via intersection of eigenvalues

    Get PDF
    International audienceIn this paper we consider the problem of inducing a transition in a controlled quantum mechanical system whose spectrum loses simplicity for some values of the control. We study the situation in which the Hamiltonian of the system is real, and we are in presence of two controls. In this case, eigenvalue crossings are generically conical. Adiabatic approximation is used to decouple a finite dimensional sub-system from the original one (usually infinite dimensional). The main advantage of this method is that as a byproduct of the controllability result it permits to get an explicit expression of the controls. Moreover it may be used in the case in which the dependence of the Hamiltonian from the controls is non-linear, for which at the moment, no other method works. In this paper we study the basic block of this controllability method, that is a two by two system whose spectrum presents a conical intersection. We show how to control exactly this system with a control strategy that can be slowed down. The possibility of slowing down the control law is essential to obtain an adiabatic decoupling from the rest of the system with an arbitrary precision

    Controllability and observability of grid graphs via reduction and symmetries

    Full text link
    In this paper we investigate the controllability and observability properties of a family of linear dynamical systems, whose structure is induced by the Laplacian of a grid graph. This analysis is motivated by several applications in network control and estimation, quantum computation and discretization of partial differential equations. Specifically, we characterize the structure of the grid eigenvectors by means of suitable decompositions of the graph. For each eigenvalue, based on its multiplicity and on suitable symmetries of the corresponding eigenvectors, we provide necessary and sufficient conditions to characterize all and only the nodes from which the induced dynamical system is controllable (observable). We discuss the proposed criteria and show, through suitable examples, how such criteria reduce the complexity of the controllability (respectively observability) analysis of the grid

    Control of unstable macroscopic oscillations in the dynamics of three coupled Bose condensates

    Get PDF
    We study the dynamical stability of the macroscopic quantum oscillations characterizing a system of three coupled Bose-Einstein condensates arranged into an open-chain geometry. The boson interaction, the hopping amplitude and the central-well relative depth are regarded as adjustable parameters. After deriving the stability diagrams of the system, we identify three mechanisms to realize the transition from an unstable to stable behavior and analyze specific configurations that, by suitably tuning the model parameters, give rise to macroscopic effects which are expected to be accessible to experimental observation. Also, we pinpoint a system regime that realizes a Josephson-junction-like effect. In this regime the system configuration do not depend on the model interaction parameters, and the population oscillation amplitude is related to the condensate-phase difference. This fact makes possible estimating the latter quantity, since the measure of the oscillating amplitudes is experimentally accessible.Comment: 25 pages, 12 figure

    Adiabatic control of the Schr\"odinger equation via conical intersections of the eigenvalues

    Get PDF
    In this paper we present a constructive method to control the bilinear Schr\"odinger equation via two controls. The method is based on adiabatic techniques and works if the spectrum of the Hamiltonian admits eigenvalue intersections, and if the latter are conical (as it happens generically). We provide sharp estimates of the relation between the error and the controllability time

    Thermodynamics of relativistic quantum fields confined in cavities

    Full text link
    We investigate the quantum thermodynamical properties of localised relativistic quantum fields, and how they can be used as quantum thermal machines. We study the efficiency and power of energy transfer between the classical gravitational degrees of freedom, such as the energy input due to the motion of boundaries or an impinging gravitational wave, and the excitations of a confined quantum field. We find that the efficiency of energy transfer depends dramatically on the input initial state of the system. Furthermore, we investigate the ability of the system to extract energy from a gravitational wave and store it in a battery. This process is inefficient in optical cavities but is significantly enhanced when employing trapped Bose Einstein condensates. We also employ standard fluctuation results to obtain the work probability distribution, which allows us to understand how the efficiency is related to the dissipation of work. Finally, we apply our techniques to a setup where an impinging gravitational wave excites the phononic modes of a Bose Einstein condensate. We find that, in this case, the percentage of energy transferred to the phonons approaches unity after a suitable amount of time. These results give a quantitative insight into the thermodynamic behaviour of relativistic quantum fields confined in cavities.Comment: 35 pages, 3 figures. Manuscript substantially updated. I. Fuentes also published as I. Fuentes-Guridi and I. Fuentes-Schulle

    Adiabatic passage and ensemble control of quantum systems

    Full text link
    This paper considers population transfer between eigenstates of a finite quantum ladder controlled by a classical electric field. Using an appropriate change of variables, we show that this setting can be set in the framework of adiabatic passage, which is known to facilitate ensemble control of quantum systems. Building on this insight, we present a mathematical proof of robustness for a control protocol -- chirped pulse -- practiced by experimentalists to drive an ensemble of quantum systems from the ground state to the most excited state. We then propose new adiabatic control protocols using a single chirped and amplitude shaped pulse, to robustly perform any permutation of eigenstate populations, on an ensemble of systems with badly known coupling strengths. Such adiabatic control protocols are illustrated by simulations achieving all 24 permutations for a 4-level ladder

    On a numerical construction of doubly stochastic matrices with prescribed eigenvalues

    Full text link
    We study the inverse eigenvalue problem for finding doubly stochastic matrices with specified eigenvalues. By making use of a combination of Dykstra's algorithm and an alternating projection process onto a non-convex set, we derive hybrid algorithms for finding doubly stochastic matrices and symmetric doubly stochastic matrices with prescribed eigenvalues. Furthermore, we prove that the proposed algorithms converge and linear convergence is also proved. Numerical examples are presented to demonstrate the efficiency of our method.Comment: 16 page
    • …
    corecore