400 research outputs found

    Learning Task Priorities from Demonstrations

    Full text link
    Bimanual operations in humanoids offer the possibility to carry out more than one manipulation task at the same time, which in turn introduces the problem of task prioritization. We address this problem from a learning from demonstration perspective, by extending the Task-Parameterized Gaussian Mixture Model (TP-GMM) to Jacobian and null space structures. The proposed approach is tested on bimanual skills but can be applied in any scenario where the prioritization between potentially conflicting tasks needs to be learned. We evaluate the proposed framework in: two different tasks with humanoids requiring the learning of priorities and a loco-manipulation scenario, showing that the approach can be exploited to learn the prioritization of multiple tasks in parallel.Comment: Accepted for publication at the IEEE Transactions on Robotic

    Asymmetric Dual-Arm Task Execution using an Extended Relative Jacobian

    Full text link
    Coordinated dual-arm manipulation tasks can be broadly characterized as possessing absolute and relative motion components. Relative motion tasks, in particular, are inherently redundant in the way they can be distributed between end-effectors. In this work, we analyse cooperative manipulation in terms of the asymmetric resolution of relative motion tasks. We discuss how existing approaches enable the asymmetric execution of a relative motion task, and show how an asymmetric relative motion space can be defined. We leverage this result to propose an extended relative Jacobian to model the cooperative system, which allows a user to set a concrete degree of asymmetry in the task execution. This is achieved without the need for prescribing an absolute motion target. Instead, the absolute motion remains available as a functional redundancy to the system. We illustrate the properties of our proposed Jacobian through numerical simulations of a novel differential Inverse Kinematics algorithm.Comment: Accepted for presentation at ISRR19. 16 Page

    Representation and control of coordinated-motion tasks for human-robot systems

    Get PDF
    It is challenging for robots to perform various tasks in a human environment. This is because many human-centered tasks require coordination in both hands and may often involve cooperation with another human. Although human-centered tasks require different types of coordinated movements, most of the existing methodologies have focused only on specific types of coordination. This thesis aims at the description and control of coordinated-motion tasks for human-robot systems; i.e., humanoid robots as well as multi-robot and human-robot systems. First, for bimanually coordinated-motion tasks in dual-manipulator systems, we propose the Extended-Cooperative-Task-Space (ECTS) representation, which extends the existing Cooperative-Task-Space (CTS) representation based on the kinematic models for human bimanual movements in Biomechanics. The proposed ECTS representation can represent the whole spectrum of dual-arm motion/force coordination using two sets of ECTS motion/force variables in a unified manner. The type of coordination can be easily chosen by two meaningful coefficients, and during coordinated-motion tasks, each set of variables directly describes two different aspects of coordinated motion and force behaviors. Thus, the operator can specify coordinated-motion/force tasks more intuitively in high-level descriptions, and the specified tasks can be easily reused in other situations with greater flexibility. Moreover, we present consistent procedures of using the ECTS representation for task specifications in the upper-body and lower-body subsystems of humanoid robots in order to perform manipulation and locomotion tasks, respectively. Besides, we propose and discuss performance indices derived based on the ECTS representation, which can be used to evaluate and optimize the performance of any type of dual-arm manipulation tasks. We show that using the ECTS representation for specifying both dual-arm manipulation and biped locomotion tasks can greatly simplify the motion planning process, allowing the operator to focus on high-level descriptions of those tasks. Both upper-body and lower-body task specifications are demonstrated by specifying whole-body task examples on a Hubo II+ robot carrying out dual-arm manipulation as well as biped locomotion tasks in a simulation environment. We also present the results from experiments on a dual-arm robot (Baxter) for teleoperating various types of coordinated-motion tasks using a single 6D mouse interface. The specified upper- and lower-body tasks can be considered as coordinated motions with constraints. In order to express various constraints imposed across the whole-body, we discuss the modeling of whole-body structure and the computations for robotic systems having multiple kinematic chains. Then we present a whole-body controller formulated as a quadratic programming, which can take different types of constraints into account in a prioritized manner. We validate the whole-body controller based on the simulation results on a Hubo II+ robot performing specified whole-body task examples with a number of motion and force constraints as well as actuation limits. Lastly, we discuss an extension of the ECTS representation, called Hierarchical Extended-Cooperative-Task Space (H-ECTS) framework, which uses tree-structured graphical representations for coordinated-motion tasks of multi-robot and human-robot systems. The H-ECTS framework is validated by experimental results on two Baxter robots cooperating with each other as well as with an additional human partner

    Analyzing Whole-Body Pose Transitions in Multi-Contact Motions

    Full text link
    When executing whole-body motions, humans are able to use a large variety of support poses which not only utilize the feet, but also hands, knees and elbows to enhance stability. While there are many works analyzing the transitions involved in walking, very few works analyze human motion where more complex supports occur. In this work, we analyze complex support pose transitions in human motion involving locomotion and manipulation tasks (loco-manipulation). We have applied a method for the detection of human support contacts from motion capture data to a large-scale dataset of loco-manipulation motions involving multi-contact supports, providing a semantic representation of them. Our results provide a statistical analysis of the used support poses, their transitions and the time spent in each of them. In addition, our data partially validates our taxonomy of whole-body support poses presented in our previous work. We believe that this work extends our understanding of human motion for humanoids, with a long-term objective of developing methods for autonomous multi-contact motion planning.Comment: 8 pages, IEEE-RAS International Conference on Humanoid Robots (Humanoids) 201

    Mixline: A Hybrid Reinforcement Learning Framework for Long-horizon Bimanual Coffee Stirring Task

    Full text link
    Bimanual activities like coffee stirring, which require coordination of dual arms, are common in daily life and intractable to learn by robots. Adopting reinforcement learning to learn these tasks is a promising topic since it enables the robot to explore how dual arms coordinate together to accomplish the same task. However, this field has two main challenges: coordination mechanism and long-horizon task decomposition. Therefore, we propose the Mixline method to learn sub-tasks separately via the online algorithm and then compose them together based on the generated data through the offline algorithm. We constructed a learning environment based on the GPU-accelerated Isaac Gym. In our work, the bimanual robot successfully learned to grasp, hold and lift the spoon and cup, insert them together and stir the coffee. The proposed method has the potential to be extended to other long-horizon bimanual tasks.Comment: 10 pages, conferenc

    Bimanual robot skills: MP encoding, dimensionality reduction and reinforcement learning

    Get PDF
    In our culture, robots have been in novels and cinema for a long time, but it has been specially in the last two decades when the improvements in hardware - better computational power and components - and advances in Artificial Intelligence (AI), have allowed robots to start sharing spaces with humans. Such situations require, aside from ethical considerations, robots to be able to move with both compliance and precision, and learn at different levels, such as perception, planning, and motion, being the latter the focus of this work. The first issue addressed in this thesis is inverse kinematics for redundant robot manipulators, i.e: positioning the robot joints so as to reach a certain end-effector pose. We opt for iterative solutions based on the inversion of the kinematic Jacobian of a robot, and propose to filter and limit the gains in the spectral domain, while also unifying such approach with a continuous, multipriority scheme. Such inverse kinematics method is then used to derive manipulability in the whole workspace of an antropomorphic arm, and the coordination of two arms is subsequently optimized by finding their best relative positioning. Having solved the kinematic issues, a robot learning within a human environment needs to move compliantly, with limited amount of force, in order not to harm any humans or cause any damage, while being as precise as possible. Therefore, we developed two dynamic models for the same redundant arm we had analysed kinematically: The first based on local models with Gaussian projections, and the second characterizing the most problematic term of the dynamics, namely friction. Such models allowed us to implement feed-forward controllers, where we can actively change the weights in the compliance-precision tradeoff. Moreover, we used such models to predict external forces acting on the robot, without the use of force sensors. Afterwards, we noticed that bimanual robots must coordinate their components (or limbs) and be able to adapt to new situations with ease. Over the last decade, a number of successful applications for learning robot motion tasks have been published. However, due to the complexity of a complete system including all the required elements, most of these applications involve only simple robots with a large number of high-end technology sensors, or consist of very simple and controlled tasks. Using our previous framework for kinematics and control, we relied on two types of movement primitives to encapsulate robot motion. Such movement primitives are very suitable for using reinforcement learning. In particular, we used direct policy search, which uses the motion parametrization as the policy itself. In order to improve the learning speed in real robot applications, we generalized a policy search algorithm to give some importance to samples yielding a bad result, and we paid special attention to the dimensionality of the motion parametrization. We reduced such dimensionality with linear methods, using the rewards obtained through motion repetition and execution. We tested such framework in a bimanual task performed by two antropomorphic arms, such as the folding of garments, showing how a reduced dimensionality can provide qualitative information about robot couplings and help to speed up the learning of tasks when robot motion executions are costly.A la nostra cultura, els robots han estat presents en novel·les i cinema des de fa dècades, però ha sigut especialment en les últimes dues quan les millores en hardware (millors capacitats de còmput) i els avenços en intel·ligència artificial han permès que els robots comencin a compartir espais amb els humans. Aquestes situacions requereixen, a banda de consideracions ètiques, que els robots siguin capaços de moure's tant amb suavitat com amb precisió, i d'aprendre a diferents nivells, com són la percepció, planificació i moviment, essent l'última el centre d'atenció d'aquest treball. El primer problema adreçat en aquesta tesi és la cinemàtica inversa, i.e.: posicionar les articulacions del robot de manera que l'efector final estigui en una certa posició i orientació. Hem estudiat el camp de les solucions iteratives, basades en la inversió del Jacobià cinemàtic d'un robot, i proposem un filtre que limita els guanys en el seu domini espectral, mentre també unifiquem tal mètode dins un esquema multi-prioritat i continu. Aquest mètode per a la cinemàtica inversa és usat a l'hora d'encapsular tota la informació sobre l'espai de treball d'un braç antropomòrfic, i les capacitats de coordinació entre dos braços són optimitzades, tot trobant la seva millor posició relativa en l'espai. Havent resolt les dificultats cinemàtiques, un robot que aprèn en un entorn humà necessita moure's amb suavitat exercint unes forces limitades per tal de no causar danys, mentre es mou amb la màxima precisió possible. Per tant, hem desenvolupat dos models dinàmics per al mateix braç robòtic redundant que havíem analitzat des del punt de vista cinemàtic: El primer basat en models locals amb projeccions de Gaussianes i el segon, caracteritzant el terme més problemàtic i difícil de representar de la dinàmica, la fricció. Aquests models ens van permetre utilitzar controladors coneguts com "feed-forward", on podem canviar activament els guanys buscant l'equilibri precisió-suavitat que més convingui. A més, hem usat aquests models per a inferir les forces externes actuant en el robot, sense la necessitat de sensors de força. Més endavant, ens hem adonat que els robots bimanuals han de coordinar els seus components (braços) i ser capaços d'adaptar-se a noves situacions amb facilitat. Al llarg de l'última dècada, diverses aplicacions per aprendre tasques motores robòtiques amb èxit han estat publicades. No obstant, degut a la complexitat d'un sistema complet que inclogui tots els elements necessaris, la majoria d'aquestes aplicacions consisteixen en robots més aviat simples amb costosos sensors d'última generació, o a resoldre tasques senzilles en un entorn molt controlat. Utilitzant el nostre treball en cinemàtica i control, ens hem basat en dos tipus de primitives de moviment per caracteritzar la motricitat robòtica. Aquestes primitives de moviment són molt adequades per usar aprenentatge per reforç. En particular, hem usat la búsqueda directa de la política, un camp de l'aprenentatge per reforç que usa la parametrització del moviment com la pròpia política. Per tal de millorar la velocitat d'aprenentatge en aplicacions amb robots reals, hem generalitzat un algoritme de búsqueda directa de política per a donar importància a les mostres amb mal resultat, i hem donat especial atenció a la reducció de dimensionalitat en la parametrització dels moviments. Hem reduït la dimensionalitat amb mètodes lineals, utilitzant les recompenses obtingudes EN executar els moviments. Aquests mètodes han estat provats en tasques bimanuals com són plegar roba, usant dos braços antropomòrfics. Els resultats mostren com la reducció de dimensionalitat pot aportar informació qualitativa d'una tasca, i al mateix temps ajuda a aprendre-la més ràpid quan les execucions amb robots reals són costoses

    Passive Motion Paradigm: An Alternative to Optimal Control

    Get PDF
    In the last years, optimal control theory (OCT) has emerged as the leading approach for investigating neural control of movement and motor cognition for two complementary research lines: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the “degrees of freedom (DoFs) problem,” the common core of production, observation, reasoning, and learning of “actions.” OCT, directly derived from engineering design techniques of control systems quantifies task goals as “cost functions” and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative “softer” approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that “animates” the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints “at runtime,” hence solving the “DoFs problem” without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of “potential actions.” In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it for designing better cognitive architectures

    Bimanual robot skills: MP encoding, dimensionality reduction and reinforcement learning

    Get PDF
    Aplicat embargament des de la data de defensa fins 1/7/2018Premio a la mejor Tesis Doctoral sobre Robótica, Edición 2017, atorgat pel Comité Español de Automática.Finalista del 2018 George Girault PhD Award, from EuRoboticsIn our culture, robots have been in novels and cinema for a long time, but it has been specially in the last two decades when the improvements in hardware - better computational power and components - and advances in Artificial Intelligence (AI), have allowed robots to start sharing spaces with humans. Such situations require, aside from ethical considerations, robots to be able to move with both compliance and precision, and learn at different levels, such as perception, planning, and motion, being the latter the focus of this work. The first issue addressed in this thesis is inverse kinematics for redundant robot manipulators, i.e: positioning the robot joints so as to reach a certain end-effector pose. We opt for iterative solutions based on the inversion of the kinematic Jacobian of a robot, and propose to filter and limit the gains in the spectral domain, while also unifying such approach with a continuous, multipriority scheme. Such inverse kinematics method is then used to derive manipulability in the whole workspace of an antropomorphic arm, and the coordination of two arms is subsequently optimized by finding their best relative positioning. Having solved the kinematic issues, a robot learning within a human environment needs to move compliantly, with limited amount of force, in order not to harm any humans or cause any damage, while being as precise as possible. Therefore, we developed two dynamic models for the same redundant arm we had analysed kinematically: The first based on local models with Gaussian projections, and the second characterizing the most problematic term of the dynamics, namely friction. Such models allowed us to implement feed-forward controllers, where we can actively change the weights in the compliance-precision tradeoff. Moreover, we used such models to predict external forces acting on the robot, without the use of force sensors. Afterwards, we noticed that bimanual robots must coordinate their components (or limbs) and be able to adapt to new situations with ease. Over the last decade, a number of successful applications for learning robot motion tasks have been published. However, due to the complexity of a complete system including all the required elements, most of these applications involve only simple robots with a large number of high-end technology sensors, or consist of very simple and controlled tasks. Using our previous framework for kinematics and control, we relied on two types of movement primitives to encapsulate robot motion. Such movement primitives are very suitable for using reinforcement learning. In particular, we used direct policy search, which uses the motion parametrization as the policy itself. In order to improve the learning speed in real robot applications, we generalized a policy search algorithm to give some importance to samples yielding a bad result, and we paid special attention to the dimensionality of the motion parametrization. We reduced such dimensionality with linear methods, using the rewards obtained through motion repetition and execution. We tested such framework in a bimanual task performed by two antropomorphic arms, such as the folding of garments, showing how a reduced dimensionality can provide qualitative information about robot couplings and help to speed up the learning of tasks when robot motion executions are costly.A la nostra cultura, els robots han estat presents en novel·les i cinema des de fa dècades, però ha sigut especialment en les últimes dues quan les millores en hardware (millors capacitats de còmput) i els avenços en intel·ligència artificial han permès que els robots comencin a compartir espais amb els humans. Aquestes situacions requereixen, a banda de consideracions ètiques, que els robots siguin capaços de moure's tant amb suavitat com amb precisió, i d'aprendre a diferents nivells, com són la percepció, planificació i moviment, essent l'última el centre d'atenció d'aquest treball. El primer problema adreçat en aquesta tesi és la cinemàtica inversa, i.e.: posicionar les articulacions del robot de manera que l'efector final estigui en una certa posició i orientació. Hem estudiat el camp de les solucions iteratives, basades en la inversió del Jacobià cinemàtic d'un robot, i proposem un filtre que limita els guanys en el seu domini espectral, mentre també unifiquem tal mètode dins un esquema multi-prioritat i continu. Aquest mètode per a la cinemàtica inversa és usat a l'hora d'encapsular tota la informació sobre l'espai de treball d'un braç antropomòrfic, i les capacitats de coordinació entre dos braços són optimitzades, tot trobant la seva millor posició relativa en l'espai. Havent resolt les dificultats cinemàtiques, un robot que aprèn en un entorn humà necessita moure's amb suavitat exercint unes forces limitades per tal de no causar danys, mentre es mou amb la màxima precisió possible. Per tant, hem desenvolupat dos models dinàmics per al mateix braç robòtic redundant que havíem analitzat des del punt de vista cinemàtic: El primer basat en models locals amb projeccions de Gaussianes i el segon, caracteritzant el terme més problemàtic i difícil de representar de la dinàmica, la fricció. Aquests models ens van permetre utilitzar controladors coneguts com "feed-forward", on podem canviar activament els guanys buscant l'equilibri precisió-suavitat que més convingui. A més, hem usat aquests models per a inferir les forces externes actuant en el robot, sense la necessitat de sensors de força. Més endavant, ens hem adonat que els robots bimanuals han de coordinar els seus components (braços) i ser capaços d'adaptar-se a noves situacions amb facilitat. Al llarg de l'última dècada, diverses aplicacions per aprendre tasques motores robòtiques amb èxit han estat publicades. No obstant, degut a la complexitat d'un sistema complet que inclogui tots els elements necessaris, la majoria d'aquestes aplicacions consisteixen en robots més aviat simples amb costosos sensors d'última generació, o a resoldre tasques senzilles en un entorn molt controlat. Utilitzant el nostre treball en cinemàtica i control, ens hem basat en dos tipus de primitives de moviment per caracteritzar la motricitat robòtica. Aquestes primitives de moviment són molt adequades per usar aprenentatge per reforç. En particular, hem usat la búsqueda directa de la política, un camp de l'aprenentatge per reforç que usa la parametrització del moviment com la pròpia política. Per tal de millorar la velocitat d'aprenentatge en aplicacions amb robots reals, hem generalitzat un algoritme de búsqueda directa de política per a donar importància a les mostres amb mal resultat, i hem donat especial atenció a la reducció de dimensionalitat en la parametrització dels moviments. Hem reduït la dimensionalitat amb mètodes lineals, utilitzant les recompenses obtingudes EN executar els moviments. Aquests mètodes han estat provats en tasques bimanuals com són plegar roba, usant dos braços antropomòrfics. Els resultats mostren com la reducció de dimensionalitat pot aportar informació qualitativa d'una tasca, i al mateix temps ajuda a aprendre-la més ràpid quan les execucions amb robots reals són costoses.Award-winningPostprint (published version

    Dynamic Handover: Throw and Catch with Bimanual Hands

    Full text link
    Humans throw and catch objects all the time. However, such a seemingly common skill introduces a lot of challenges for robots to achieve: The robots need to operate such dynamic actions at high-speed, collaborate precisely, and interact with diverse objects. In this paper, we design a system with two multi-finger hands attached to robot arms to solve this problem. We train our system using Multi-Agent Reinforcement Learning in simulation and perform Sim2Real transfer to deploy on the real robots. To overcome the Sim2Real gap, we provide multiple novel algorithm designs including learning a trajectory prediction model for the object. Such a model can help the robot catcher has a real-time estimation of where the object will be heading, and then react accordingly. We conduct our experiments with multiple objects in the real-world system, and show significant improvements over multiple baselines. Our project page is available at \url{https://binghao-huang.github.io/dynamic_handover/}.Comment: Accepted at CoRL 2023. https://binghao-huang.github.io/dynamic_handover

    A Multi-Robot Cooperation Framework for Sewing Personalized Stent Grafts

    Full text link
    This paper presents a multi-robot system for manufacturing personalized medical stent grafts. The proposed system adopts a modular design, which includes: a (personalized) mandrel module, a bimanual sewing module, and a vision module. The mandrel module incorporates the personalized geometry of patients, while the bimanual sewing module adopts a learning-by-demonstration approach to transfer human hand-sewing skills to the robots. The human demonstrations were firstly observed by the vision module and then encoded using a statistical model to generate the reference motion trajectories. During autonomous robot sewing, the vision module plays the role of coordinating multi-robot collaboration. Experiment results show that the robots can adapt to generalized stent designs. The proposed system can also be used for other manipulation tasks, especially for flexible production of customized products and where bimanual or multi-robot cooperation is required.Comment: 10 pages, 12 figures, accepted by IEEE Transactions on Industrial Informatics, Key words: modularity, medical device customization, multi-robot system, robot learning, visual servoing, robot sewin
    corecore