1,588 research outputs found

    Learning the dynamics and time-recursive boundary detection of deformable objects

    Get PDF
    We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as non-parametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although the paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object

    Deep learning cardiac motion analysis for human survival prediction

    Get PDF
    Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p < .0001) for our model C=0.73 (95%\% CI: 0.68 - 0.78) than the human benchmark of C=0.59 (95%\% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival

    Robust Cardiac Motion Estimation using Ultrafast Ultrasound Data: A Low-Rank-Topology-Preserving Approach

    Get PDF
    Cardiac motion estimation is an important diagnostic tool to detect heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of the complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate the cardiac motion using ultrafast ultrasound data. -- Our solution is based on a variational formulation characterized by the L2-regularized class. The displacement is represented by a lattice of b-splines and we ensure robustness by applying a maximum likelihood type estimator. While this is an important part of our solution, the main highlight of this paper is to combine a low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati Matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. While maintaining the accuracy of the solution, the low-rank preprocessing is shown to speed up the convergence of the variational problem. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that experience motion.Comment: 15 pages, 10 figures, Physics in Medicine and Biology, 201

    From Fully-Supervised Single-Task to Semi-Supervised Multi-Task Deep Learning Architectures for Segmentation in Medical Imaging Applications

    Get PDF
    Medical imaging is routinely performed in clinics worldwide for the diagnosis and treatment of numerous medical conditions in children and adults. With the advent of these medical imaging modalities, radiologists can visualize both the structure of the body as well as the tissues within the body. However, analyzing these high-dimensional (2D/3D/4D) images demands a significant amount of time and effort from radiologists. Hence, there is an ever-growing need for medical image computing tools to extract relevant information from the image data to help radiologists perform efficiently. Image analysis based on machine learning has pivotal potential to improve the entire medical imaging pipeline, providing support for clinical decision-making and computer-aided diagnosis. To be effective in addressing challenging image analysis tasks such as classification, detection, registration, and segmentation, specifically for medical imaging applications, deep learning approaches have shown significant improvement in performance. While deep learning has shown its potential in a variety of medical image analysis problems including segmentation, motion estimation, etc., generalizability is still an unsolved problem and many of these successes are achieved at the cost of a large pool of datasets. For most practical applications, getting access to a copious dataset can be very difficult, often impossible. Annotation is tedious and time-consuming. This cost is further amplified when annotation must be done by a clinical expert in medical imaging applications. Additionally, the applications of deep learning in the real-world clinical setting are still limited due to the lack of reliability caused by the limited prediction capabilities of some deep learning models. Moreover, while using a CNN in an automated image analysis pipeline, it’s critical to understand which segmentation results are problematic and require further manual examination. To this extent, the estimation of uncertainty calibration in a semi-supervised setting for medical image segmentation is still rarely reported. This thesis focuses on developing and evaluating optimized machine learning models for a variety of medical imaging applications, ranging from fully-supervised, single-task learning to semi-supervised, multi-task learning that makes efficient use of annotated training data. The contributions of this dissertation are as follows: (1) developing a fully-supervised, single-task transfer learning for the surgical instrument segmentation from laparoscopic images; and (2) utilizing supervised, single-task, transfer learning for segmenting and digitally removing the surgical instruments from endoscopic/laparoscopic videos to allow the visualization of the anatomy being obscured by the tool. The tool removal algorithms use a tool segmentation mask and either instrument-free reference frames or previous instrument-containing frames to fill in (inpaint) the instrument segmentation mask; (3) developing fully-supervised, single-task learning via efficient weight pruning and learned group convolution for accurate left ventricle (LV), right ventricle (RV) blood pool and myocardium localization and segmentation from 4D cine cardiac MR images; (4) demonstrating the use of our fully-supervised memory-efficient model to generate dynamic patient-specific right ventricle (RV) models from cine cardiac MRI dataset via an unsupervised learning-based deformable registration field; and (5) integrating a Monte Carlo dropout into our fully-supervised memory-efficient model with inherent uncertainty estimation, with the overall goal to estimate the uncertainty associated with the obtained segmentation and error, as a means to flag regions that feature less than optimal segmentation results; (6) developing semi-supervised, single-task learning via self-training (through meta pseudo-labeling) in concert with a Teacher network that instructs the Student network by generating pseudo-labels given unlabeled input data; (7) proposing largely-unsupervised, multi-task learning to demonstrate the power of a simple combination of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN), and a conditioning layer-based reconstructor for performing two of the foremost critical tasks in medical imaging — segmentation of cardiac structures and reconstruction of the cine cardiac MR images; (8) demonstrating the use of 3D semi-supervised, multi-task learning for jointly learning multiple tasks in a single backbone module – uncertainty estimation, geometric shape generation, and cardiac anatomical structure segmentation of the left atrial cavity from 3D Gadolinium-enhanced magnetic resonance (GE-MR) images. This dissertation summarizes the impact of the contributions of our work in terms of demonstrating the adaptation and use of deep learning architectures featuring different levels of supervision to build a variety of image segmentation tools and techniques that can be used across a wide spectrum of medical image computing applications centered on facilitating and promoting the wide-spread computer-integrated diagnosis and therapy data science

    Image based approach for early assessment of heart failure.

    Get PDF
    In diagnosing heart diseases, the estimation of cardiac performance indices requires accurate segmentation of the left ventricle (LV) wall from cine cardiac magnetic resonance (CMR) images. MR imaging is noninvasive and generates clear images; however, it is impractical to manually process the huge number of images generated to calculate the performance indices. In this dissertation, we introduce a novel, fast, robust, bi-directional coupled parametric deformable models that are capable of segmenting the LV wall borders using first- and second-order visual appearance features. These features are embedded in a new stochastic external force that preserves the topology of the LV wall to track the evolution of the parametric deformable models control points. We tested the proposed segmentation approach on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC) and the average distance (AD) between the ground truth and automated segmentation contours. Our approach achieves a mean DSC value of 0.926±0.022 and mean AD value of 2.16±0.60 mm compared to two other level set methods that achieve mean DSC values of 0.904±0.033 and 0.885±0.02; and mean AD values of 2.86±1.35 mm and 5.72±4.70 mm, respectively. Also, a novel framework for assessing both 3D functional strain and wall thickening from 4D cine cardiac magnetic resonance imaging (CCMR) is introduced. The introduced approach is primarily based on using geometrical features to track the LV wall during the cardiac cycle. The 4D tracking approach consists of the following two main steps: (i) Initially, the surface points on the LV wall are tracked by solving a 3D Laplace equation between two subsequent LV surfaces; and (ii) Secondly, the locations of the tracked LV surface points are iteratively adjusted through an energy minimization cost function using a generalized Gauss-Markov random field (GGMRF) image model in order to remove inconsistencies and preserve the anatomy of the heart wall during the tracking process. Then the circumferential strains are straight forward calculated from the location of the tracked LV surface points. In addition, myocardial wall thickening is estimated by co-allocation of the corresponding points, or matches between the endocardium and epicardium surfaces of the LV wall using the solution of the 3D laplace equation. Experimental results on in vivo data confirm the accuracy and robustness of our method. Moreover, the comparison results demonstrate that our approach outperforms 2D wall thickening estimation approaches

    Automatic Segmentation Measuring Function for Cardiac MR-Left Ventricle (LV) Images

    Get PDF
    Automatic segmentation approaches are a desirable solution for Endocardium (inner) and Epicardium (outer) contours delineation using cardiac magnetic resonance left ventricle (CMR-LV) short axis images. The Level Set Model (LSM) and Variational LSM (VLSM) is the state-of-the-art in detecting the inner and outer contour for medical images. However, in CMR-LV images segmentation the LSM and VLSM are facing with the issue of re-initialisation because of irregular circle shape. In this paper, we developed an automatic segmentation measuring function based on statistical formulation to solve the re-initialisation issues in huge set of data images. The sign Euclidean distance function successfully classified the negative (inner contour) and positive (outer contour) features. The Fuzzy C mean interaction operator intersects the high membership degree that initialises the centre point. The experiments were conducted using the Sunnybrook and Pusat Juntung Hospital Umum Sarawak (PJHUS) cardiac datasets. This paper aims at developing a distance function to guide the automatic segmentation for LV contours and also to reduce segmentation error

    Machine learning approaches to model cardiac shape in large-scale imaging studies

    Get PDF
    Recent improvements in non-invasive imaging, together with the introduction of fully-automated segmentation algorithms and big data analytics, has paved the way for large-scale population-based imaging studies. These studies promise to increase our understanding of a large number of medical conditions, including cardiovascular diseases. However, analysis of cardiac shape in such studies is often limited to simple morphometric indices, ignoring large part of the information available in medical images. Discovery of new biomarkers by machine learning has recently gained traction, but often lacks interpretability. The research presented in this thesis aimed at developing novel explainable machine learning and computational methods capable of better summarizing shape variability, to better inform association and predictive clinical models in large-scale imaging studies. A powerful and flexible framework to model the relationship between three-dimensional (3D) cardiac atlases, encoding multiple phenotypic traits, and genetic variables is first presented. The proposed approach enables the detection of regional phenotype-genotype associations that would be otherwise neglected by conventional association analysis. Three learning-based systems based on deep generative models are then proposed. In the first model, I propose a classifier of cardiac shapes which exploits task-specific generative shape features, and it is designed to enable the visualisation of the anatomical effect these features encode in 3D, making the classification task transparent. The second approach models a database of anatomical shapes via a hierarchy of conditional latent variables and it is capable of detecting, quantifying and visualising onto a template shape the most discriminative anatomical features that characterize distinct clinical conditions. Finally, a preliminary analysis of a deep learning system capable of reconstructing 3D high-resolution cardiac segmentations from a sparse set of 2D views segmentations is reported. This thesis demonstrates that machine learning approaches can facilitate high-throughput analysis of normal and pathological anatomy and of its determinants without losing clinical interpretability.Open Acces

    Automatic Assessment of Cardiac Left Ventricular Function Via Magnetic Resonance Images

    Get PDF
    Automating global and segmental (regional) assessments of cardiac Left Ventricle (LV) function in Magnetic Resonance Images (MRI) has recently sparked an impressive research effort, which has resulted a number of techniques delivering promising performances. However, despite such an effort, the problem is still acknowledged to be challenging, with substantial room for improvements in regard to accuracy. Furthermore, most of the existing techniques are labour intensive, requiring delineations of the endo- and/or epi-cardial boundaries in all frames of a cardiac sequence. On the one hand, global assessments of LV function focus on estimation of the Ejection Fraction (EF), which quantifies how much blood the heart is pumping within each beat. On the other hand, regional assessments focus on comprehensive analysis of the wall motions within each of the standardized segments of the myocardium, the muscle which contracts and sends the blood out of the LV. In clinical practice, the EF is often estimated via manual segmentations of several images in a cardiac sequence. This is prohibitively time consuming, or via automatic segmentations, which is a challenging and computationally expensive task that may result in high estimation errors. Additionally, the diagnosis of the segmental dysfunction is based on visual LV assessments, which are subject to high inter-observer variability. In this thesis, we propose accurate methods to estimate both global and regional LV function with minimal user inputs in real-time from statistics estimated in MRI. From a simple user input, we build image statistics for all the images in a subject dataset. We demonstrate that these statistics are correlated with regional as well as global LV function. Different machine learning techniques have been employed to find these correlations. The regional dysfunction is investigated in terms of a binary/multi-classification problem. A comprehensive evaluation over 20 subjects demonstrated that the estimated EFs correlated very well with those obtained from independent manual segmentations. Furthermore, comparisons with estimating EF with recent segmentation algorithms show that the proposed method yielded a very competitive performance. For regional binary classification, we report a comprehensive experimental evaluation of the proposed algorithm over 928 cardiac segments obtained from 58 subjects. Compared against ground-truth evaluations by experienced radiologists, the proposed algorithm performed competitively, with an overall classification accuracy of 86.09% and a kappa measure of 0.73. We also report a comprehensive experimental evaluation of the proposed multi-classification algorithm over the same dataset. Compared against ground-truth labels assessed by experienced radiologists, the proposed algorithm yielded an overall 4-class accuracy of 74.14%
    • …
    corecore