4,152 research outputs found

    Capturing natural-colour 3D models of insects for species discovery

    Full text link
    Collections of biological specimens are fundamental to scientific understanding and characterization of natural diversity. This paper presents a system for liberating useful information from physical collections by bringing specimens into the digital domain so they can be more readily shared, analyzed, annotated and compared. It focuses on insects and is strongly motivated by the desire to accelerate and augment current practices in insect taxonomy which predominantly use text, 2D diagrams and images to describe and characterize species. While these traditional kinds of descriptions are informative and useful, they cannot cover insect specimens "from all angles" and precious specimens are still exchanged between researchers and collections for this reason. Furthermore, insects can be complex in structure and pose many challenges to computer vision systems. We present a new prototype for a practical, cost-effective system of off-the-shelf components to acquire natural-colour 3D models of insects from around 3mm to 30mm in length. Colour images are captured from different angles and focal depths using a digital single lens reflex (DSLR) camera rig and two-axis turntable. These 2D images are processed into 3D reconstructions using software based on a visual hull algorithm. The resulting models are compact (around 10 megabytes), afford excellent optical resolution, and can be readily embedded into documents and web pages, as well as viewed on mobile devices. The system is portable, safe, relatively affordable, and complements the sort of volumetric data that can be acquired by computed tomography. This system provides a new way to augment the description and documentation of insect species holotypes, reducing the need to handle or ship specimens. It opens up new opportunities to collect data for research, education, art, entertainment, biodiversity assessment and biosecurity control.Comment: 24 pages, 17 figures, PLOS ONE journa

    On a 3D scanning robot system design problem

    Get PDF
    Performing the scanning of the human body by means of conventional scanners, we faced the challenge of data insufficiency. In this given paper we present a new solution to this problem, comprising industrial robots application. Our purpose was to develop a fully functional, accurate, cheap and safe 3D scanning system based on a 6DOF industrial robot applications

    Kinematic Modeling Of An Automated Laser Line Scanning System

    Get PDF
    This research work describes the geometric coordinate transformation in an automated laser line scanning system caused by movements required for scanning a component surface. The elements of an automated laser scanning system (robot, laser line scanner, and the component coordinate system) function as a mechanical linkage to obtain a trajectory on a component surface. This methodology solves the forward kinematics, derives the component surface, and uses inverse kinematic equations to characterize the movement of the entire automated scanning system on point trajectory. To reach a point on the component, joint angles of robot have been calculated. As a result, trajectory path is obtained. This obtained robot poses on point trajectory of the component surface can be used as an input for future work that aims to develop optimal scan paths to collect “best” point cloud data sets. This work contributes in laser scanning inspection of component surfaces in manufacturing, remanufacturing, and reverse engineering applications

    Fast Statistical Outlier Removal Based Method for Large 3D Point Clouds of Outdoor Environments

    Get PDF
    This paper proposes a very effective method for data handling and preparation of the input 3D scans acquired from laser scanner mounted on the Unmanned Ground Vehicle (UGV). The main objectives are to improve and speed up the process of outliers removal for large-scale outdoor environments. This process is necessary in order to filter out the noise and to downsample the input data which will spare computational and memory resources for further processing steps, such as 3D mapping of rough terrain and unstructured environments. It includes the Voxel-subsampling and Fast Cluster Statistical Outlier Removal (FCSOR) subprocesses. The introduced FCSOR represents an extension on the Statistical Outliers Removal (SOR) method which is effective for both homogeneous and heterogeneous point clouds. This method is evaluated on real data obtained in outdoor environment

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Autonomous Tissue Scanning under Free-Form Motion for Intraoperative Tissue Characterisation

    Full text link
    In Minimally Invasive Surgery (MIS), tissue scanning with imaging probes is required for subsurface visualisation to characterise the state of the tissue. However, scanning of large tissue surfaces in the presence of deformation is a challenging task for the surgeon. Recently, robot-assisted local tissue scanning has been investigated for motion stabilisation of imaging probes to facilitate the capturing of good quality images and reduce the surgeon's cognitive load. Nonetheless, these approaches require the tissue surface to be static or deform with periodic motion. To eliminate these assumptions, we propose a visual servoing framework for autonomous tissue scanning, able to deal with free-form tissue deformation. The 3D structure of the surgical scene is recovered and a feature-based method is proposed to estimate the motion of the tissue in real-time. A desired scanning trajectory is manually defined on a reference frame and continuously updated using projective geometry to follow the tissue motion and control the movement of the robotic arm. The advantage of the proposed method is that it does not require the learning of the tissue motion prior to scanning and can deal with free-form deformation. We deployed this framework on the da Vinci surgical robot using the da Vinci Research Kit (dVRK) for Ultrasound tissue scanning. Since the framework does not rely on information from the Ultrasound data, it can be easily extended to other probe-based imaging modalities.Comment: 7 pages, 5 figures, ICRA 202
    corecore