46 research outputs found

    Left Ventricular Border Tracking Using Cardiac Motion Models and Optical Flow

    Get PDF
    The use of automated methods is becoming increasingly important for assessing cardiac function quantitatively and objectively. In this study, we propose a method for tracking three-dimensional (3-D) left ventricular contours. The method consists of a local optical flow tracker and a global tracker, which uses a statistical model of cardiac motion in an optical-flow formulation. We propose a combination of local and global trackers using gradient-based weights. The algorithm was tested on 35 echocardiographic sequences, with good results (surface error: 1.35 ± 0.46 mm, absolute volume error: 5.4 ± 4.8 mL). This demonstrates the method’s potential in automated tracking in clinical quality echocardiograms, facilitating the quantitative and objective assessment of cardiac functio

    Myocardial motion analysis and visualization from echocardiograms

    Full text link

    Spatio-Temporal Nonrigid Registration for Ultrasound Cardiac Motion Estimation

    Get PDF
    We propose a new spatio-temporal elastic registration algorithm for motion reconstruction from a series of images. The specific application is to estimate displacement fields from two-dimensional ultrasound sequences of the heart. The basic idea is to find a spatio-temporal deformation field that effectively compensates for the motion by minimizing a difference with respect to a reference frame. The key feature of our method is the use of a semi-local spatio-temporal parametric model for the deformation using splines, and the reformulation of the registration task as a global optimization problem. The scale of the spline model controls the smoothness of the displacement field. Our algorithm uses a multiresolution optimization strategy to obtain a higher speed and robustness. We evaluated the accuracy of our algorithm using a synthetic sequence generated with an ultrasound simulation package, together with a realistic cardiac motion model. We compared our new global multiframe approach with a previous method based on pairwise registration of consecutive frames to demonstrate the benefits of introducing temporal consistency. Finally, we applied the algorithm to the regional analysis of the left ventricle. Displacement and strain parameters were evaluated showing significant differences between the normal and pathological segments, thereby illustrating the clinical applicability of our method

    A fused deep learning architecture for viewpoint classification of echocardiography

    Get PDF
    This study extends the state of the art of deep learning convolutional neural network (CNN) to the classification of video images of echocardiography, aiming at assisting clinicians in diagnosis of heart diseases. Specifically, the architecture of neural networks is established by embracing hand-crafted features within a data-driven learning framework, incorporating both spatial and temporal information sustained by the video images of the moving heart and giving rise to two strands of two-dimensional convolutional neural network (CNN). In particular, the acceleration measurement along the time direction at each point is calculated using dense optical flow technique to represent temporal motion information. Subsequently, the fusion of both networks is conducted via linear integrations of the vectors of class scores obtained from each of the two networks. As a result, this architecture maintains the best classification results for eight viewpoint categories of echo videos with 92.1% accuracy rate whereas 89.5% is achieved using only single spatial CNN network. When concerning only three primary locations, 98% of accuracy rate is realised. In addition, comparisons with a number of well-known hand-engineered approaches are also performed, including 2D KAZE, 2D KAZE with Optical Flow, 3D KAZA, Optical Flow, 2D SIFT and 3D SIFT, which delivers accuracy rate of 89.4%, 84.3%, 87.9%, 79.4%, 83.8% and 73.8% respectively

    Fast left ventricle tracking using localized anatomical affine optical flow

    Get PDF
    Fast left ventricle tracking using localized anatomical affine optical flowIn daily clinical cardiology practice, left ventricle (LV) global and regional function assessment is crucial for disease diagnosis, therapy selection, and patient follow-up. Currently, this is still a time-consuming task, spending valuable human resources. In this work, a novel fast methodology for automatic LV tracking is proposed based on localized anatomically constrained affine optical flow. This novel method can be combined to previously proposed segmentation frameworks or manually delineated surfaces at an initial frame to obtain fully delineated datasets and, thus, assess both global and regional myocardial function. Its feasibility and accuracy were investigated in 3 distinct public databases, namely in realistically simulated 3D ultrasound, clinical 3D echocardiography, and clinical cine cardiac magnetic resonance images. The method showed accurate tracking results in all databases, proving its applicability and accuracy for myocardial function assessment. Moreover, when combined to previous state-of-the-art segmentation frameworks, it outperformed previous tracking strategies in both 3D ultrasound and cardiac magnetic resonance data, automatically computing relevant cardiac indices with smaller biases and narrower limits of agreement compared to reference indices. Simultaneously, the proposed localized tracking method showed to be suitable for online processing, even for 3D motion assessment. Importantly, although here evaluated for LV tracking only, this novel methodology is applicable for tracking of other target structures with minimal adaptations.The authors acknowledge funding support from FCT - Fundacao para a Ciência e a Tecnologia, Portugal, and the European Social Found, European Union, through the Programa Operacional Capital Humano (POCH) in the scope of the PhD grants SFRH/BD/93443/2013 (S. Queiros) and SFRH/BD/95438/2013 (P. Morais), and by the project ’PersonalizedNOS (01-0145-FEDER-000013)’ co-funded by Programa Operacional Regional do Norte (Norte2020) through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio

    Foetal echocardiographic segmentation

    Get PDF
    Congenital heart disease affects just under one percentage of all live births [1]. Those defects that manifest themselves as changes to the cardiac chamber volumes are the motivation for the research presented in this thesis. Blood volume measurements in vivo require delineation of the cardiac chambers and manual tracing of foetal cardiac chambers is very time consuming and operator dependent. This thesis presents a multi region based level set snake deformable model applied in both 2D and 3D which can automatically adapt to some extent towards ultrasound noise such as attenuation, speckle and partial occlusion artefacts. The algorithm presented is named Mumford Shah Sarti Collision Detection (MSSCD). The level set methods presented in this thesis have an optional shape prior term for constraining the segmentation by a template registered to the image in the presence of shadowing and heavy noise. When applied to real data in the absence of the template the MSSCD algorithm is initialised from seed primitives placed at the centre of each cardiac chamber. The voxel statistics inside the chamber is determined before evolution. The MSSCD stops at open boundaries between two chambers as the two approaching level set fronts meet. This has significance when determining volumes for all cardiac compartments since cardiac indices assume that each chamber is treated in isolation. Comparison of the segmentation results from the implemented snakes including a previous level set method in the foetal cardiac literature show that in both 2D and 3D on both real and synthetic data, the MSSCD formulation is better suited to these types of data. All the algorithms tested in this thesis are within 2mm error to manually traced segmentation of the foetal cardiac datasets. This corresponds to less than 10% of the length of a foetal heart. In addition to comparison with manual tracings all the amorphous deformable model segmentations in this thesis are validated using a physical phantom. The volume estimation of the phantom by the MSSCD segmentation is to within 13% of the physically determined volume

    Cardiac Motion Estimation with Dictionary Learning and Robust Sparse Coding in Ultrasound Imaging

    Get PDF
    Cardiac motion estimation from ultrasound images is an ill-posed problem that needs regularization to stabilize the solution. In this work, regularization is achieved by exploiting the sparseness of cardiac motion fields when decomposed in an appropriate dictionary, as well as their smoothness through a classical total variation term. The main contribution of this work is to robustify the sparse coding step in order to handle anomalies, i.e., motion patterns that significantly deviate from the expected model. The proposed approach uses an ADMM-based optimization algorithm in order to simultaneously recover the sparse representations and the outlier components. It is evaluated using two realistic simulated datasets with available ground-truth, containing native outliers and corrupted by synthetic attenuation and clutter artefacts

    Automated Analysis of 3D Stress Echocardiography

    Get PDF
    __Abstract__ The human circulatory system consists of the heart, blood, arteries, veins and capillaries. The heart is the muscular organ which pumps the blood through the human body (Fig. 1.1,1.2). Deoxygenated blood flows through the right atrium into the right ventricle, which pumps the blood into the pulmonary arteries. The blood is carried to the lungs, where it passes through a capillary network that enables the release of carbon dioxide and the uptake of oxygen. Oxygenated blood then returns to the heart via the pulmonary veins and flows from the left atrium into the left ventricle. The left ventricle then pumps the blood through the aorta, the major artery which supplies blood to the rest of the body [Drake et a!., 2005; Guyton and Halt 1996]. Therefore, it is vital that the cardiovascular system remains healthy. Disease of the cardiovascular system, if untreated, ultimately leads to the failure of other organs and death

    Automatic Assessment of Cardiac Left Ventricular Function Via Magnetic Resonance Images

    Get PDF
    Automating global and segmental (regional) assessments of cardiac Left Ventricle (LV) function in Magnetic Resonance Images (MRI) has recently sparked an impressive research effort, which has resulted a number of techniques delivering promising performances. However, despite such an effort, the problem is still acknowledged to be challenging, with substantial room for improvements in regard to accuracy. Furthermore, most of the existing techniques are labour intensive, requiring delineations of the endo- and/or epi-cardial boundaries in all frames of a cardiac sequence. On the one hand, global assessments of LV function focus on estimation of the Ejection Fraction (EF), which quantifies how much blood the heart is pumping within each beat. On the other hand, regional assessments focus on comprehensive analysis of the wall motions within each of the standardized segments of the myocardium, the muscle which contracts and sends the blood out of the LV. In clinical practice, the EF is often estimated via manual segmentations of several images in a cardiac sequence. This is prohibitively time consuming, or via automatic segmentations, which is a challenging and computationally expensive task that may result in high estimation errors. Additionally, the diagnosis of the segmental dysfunction is based on visual LV assessments, which are subject to high inter-observer variability. In this thesis, we propose accurate methods to estimate both global and regional LV function with minimal user inputs in real-time from statistics estimated in MRI. From a simple user input, we build image statistics for all the images in a subject dataset. We demonstrate that these statistics are correlated with regional as well as global LV function. Different machine learning techniques have been employed to find these correlations. The regional dysfunction is investigated in terms of a binary/multi-classification problem. A comprehensive evaluation over 20 subjects demonstrated that the estimated EFs correlated very well with those obtained from independent manual segmentations. Furthermore, comparisons with estimating EF with recent segmentation algorithms show that the proposed method yielded a very competitive performance. For regional binary classification, we report a comprehensive experimental evaluation of the proposed algorithm over 928 cardiac segments obtained from 58 subjects. Compared against ground-truth evaluations by experienced radiologists, the proposed algorithm performed competitively, with an overall classification accuracy of 86.09% and a kappa measure of 0.73. We also report a comprehensive experimental evaluation of the proposed multi-classification algorithm over the same dataset. Compared against ground-truth labels assessed by experienced radiologists, the proposed algorithm yielded an overall 4-class accuracy of 74.14%
    corecore