30,619 research outputs found

    Frequency Domain Decomposition of Digital Video Containing Multiple Moving Objects

    Get PDF
    Motion estimation has been dominated by time domain methods such as block matching and optical flow. However, these methods have problems with multiple moving objects in the video scene, moving backgrounds, noise, and fractional pixel/frame motion. This dissertation proposes a frequency domain method (FDM) that solves these problems. The methodology introduced here addresses multiple moving objects, with or without a moving background, 3-D frequency domain decomposition of digital video as the sum of locally translational (or, in the case of background, a globally translational motion), with high noise rejection. Additionally, via a version of the chirp-Z, fractional pixel/frame motion detection and quantification is accomplished. Furthermore, images of particular moving objects can be extracted and reconstructed from the frequency domain. Finally, this method can be integrated into a larger system to support motion analysis. The method presented here has been tested with synthetic data, realistic, high fidelity simulations, and actual data from established video archives to verify the claims made for the method, all presented here. In addition, a convincing comparison with an up-and-coming spatial domain method, incremental principal component pursuit (iPCP), is presented, where the FDM performs markedly better than its competition

    Nematic-Isotropic Spinodal Decomposition Kinetics of Rod-like Viruses

    Get PDF
    We investigate spinodal decomposition kinetics of an initially nematic dispersion of rod-like viruses (fd virus). Quench experiments are performed from a flow-stabilized homogeneous nematic state at high shear rate into the two-phase isotropic-nematic coexistence region at zero shear rate. We present experimental evidence that spinodal decomposition is driven by orientational diffusion, in accordance with a very recent theory.Comment: 17 pages, 6 figures, accepted in Phys. Rev.

    Parametrized Post-Newtonian Theory of Reference Frames, Multipolar Expansions and Equations of Motion in the N-body Problem

    Get PDF
    We discuss a covariant generalization of the parametrized post-Newtonian (PPN) formalism in a class of scalar-tensor theories of gravity. It includes an exact construction of a set of global and local (Fermi-like) references frames for an isolated N-body astronomical system as well as PPN multipolar decomposition of gravitational field in these frames. We derive PPN equations of translational and rotational motion of extended bodies taking into account all gravitational multipoles and analyze the body finite-size effects in relativistic dynamics that can be important at the latest stages of orbital evolution of coalescing binary systems. We also reconcile the IAU 2000 resolutions on the general relativistic reference frames in the solar system with the PPN equations of motion of the solar system bodies used in JPL ephemerides.Comment: 121 pages, 5 figures, references added, improvements made in response to referee's repor

    Affine symmetry in mechanics of collective and internal modes. Part I. Classical models

    Full text link
    Discussed is a model of collective and internal degrees of freedom with kinematics based on affine group and its subgroups. The main novelty in comparison with the previous attempts of this kind is that it is not only kinematics but also dynamics that is affinely-invariant. The relationship with the dynamics of integrable one-dimensional lattices is discussed. It is shown that affinely-invariant geodetic models may encode the dynamics of something like elastic vibrations

    An Improved Observation Model for Super-Resolution under Affine Motion

    Full text link
    Super-resolution (SR) techniques make use of subpixel shifts between frames in an image sequence to yield higher-resolution images. We propose an original observation model devoted to the case of non isometric inter-frame motion as required, for instance, in the context of airborne imaging sensors. First, we describe how the main observation models used in the SR literature deal with motion, and we explain why they are not suited for non isometric motion. Then, we propose an extension of the observation model by Elad and Feuer adapted to affine motion. This model is based on a decomposition of affine transforms into successive shear transforms, each one efficiently implemented by row-by-row or column-by-column 1-D affine transforms. We demonstrate on synthetic and real sequences that our observation model incorporated in a SR reconstruction technique leads to better results in the case of variable scale motions and it provides equivalent results in the case of isometric motions
    • …
    corecore