2,202 research outputs found

    Pressurized Lunar Rover

    Get PDF
    The pressurized lunar rover (PLR) consists of a 7 m long, 3 m diameter cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, directional lighting, cameras, and equipment for exploratory experiments. The PLR shell is constructed of a layered carbon-fiber/foam composite. The rover has six 1.5 m diameter wheels on the main body and two 1.5 m diameter wheels on the trailer. The wheels are constructed of composites and flex to increase traction and shock absorption. The wheels are each attached to a double A-arm aluminum suspension, which allows each wheel 1 m of vertical motion. In conjunction with a 0.75 m ground clearance, the suspension aids the rover in negotiating the uneven lunar terrain. The 15 N-m torque brushless electric motors are mounted with harmonic drive units inside each of the wheels. The rover is steered by electrically varying the speeds of the wheels on either side of the rover. The PLR trailer contains a radiosotope thermoelectric generator providing 6.7 kW. A secondary back-up energy storage system for short-term high-power needs is provided by a bank of batteries. The trailer can be detached to facilitate docking of the main body with the lunar base via an airlock located in the rear of the PLR. The airlock is also used for EVA operation during missions. Life support is a partly regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center. The water absorbs any damaging radiation, allowing the command center to be used as a safe haven during solar flares. Guidance, navigation, and control are supplied by a strapdown inertial measurement unit that works with the on-board computer. Star mappers provide periodic error correction. The PLR is capable of voice, video, and data transmission. It is equipped with two 5 W X-band transponder, allowing simultaneous transmission and reception. An S-band transponder is used to communicate with the crew during EVA. The PLR has a total mass of 6197 kg. It has a nominal speed of 10 km/hr and a top speed of 18 km/hr. The rover is capable of towing 3 metric tons (in addition to the RTG trailer)

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    CONCEPTUAL AND PRELIMINARY DESIGN OF UNMANNED GROUND VEHICLE IN MONITORING OIL AND GAS PLANT

    Get PDF
    An Unmanned Ground Vehicle or UGV, as the name states, is a vehicle on the ground can operated with or without any human pilot on board. This project involves designing a robust and suitable UGV structure and integrating UGV technologies specifically to adapt in the harsh conditions of oil and gas plant and providing monitoring of a human’s eye view of the plant. The process of designing will start from conceptual design until detail design. A design of UGV consisting with robust structure to install sensors, camera, boards, and all the systems. The control of this UGV will continuous by master student from electrical department. For design this UGV, the author have study types of UGV, its function and ability. For the chassis, it will be modeled using Autodesk Inventor or Solidworks software to ensure design is applicable. The expected outcome of this project is finished prototype that can be maneuvered in two modes, manually and autonomous. For now, the progress is up to detail design on the UGV and MSC ADAM view analysis for motion system. In the result, the author will show the detail design and the analysis how these UGV system function

    Mixing It Up: The Rotary Mine Comb

    Get PDF
    The Rotary Mine Comb has been put to the test on Angola’s most dangerous stretch of road. In the province of Cuando Cubango, The HALO Trust has deployed the vehicle-based RMC system with impressive results. This article assesses the system’s features and minimal-metal anti-tank mine-clearance capabilities in the field

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Generalized software application for operation of a 3D vehicle in air, water and land

    Get PDF
    The unmanned vehicles (UV) and its applications are growing exponentially. Using the radio control is the most common way to control these types of vehicles for being a simple and cheap method to control an UV. However, it doesn’t have a visual interface that allows the user to see the vehicle’s information such as battery status, speed, distance, geolocation, etc. To deal with this problem, some mobile and desktop applications have been developed. To communicate between the control device and the vehicle, dongles are commonly used to establish the connection using radio, Bluetooth or Wi-Fi. In most cases, these technologies don’t allow the user to control at long distances, Beyond Line Of-Sight (BLOS), and these applications are focused to use mostly on multi-copters, and most of the times, they only allow to connect a vehicle at a time. The purpose of this dissertation is to study the reliability of an application able to control multiple types of vehicles, such as aerial, land and water vehicles. This application allows the user to connect multiple vehicles at the same time using a single device, easily change the vehicle assigned to control, by using mobile networks to perform the communication between the developed application and the vehicle. In this way, it will be possible to connect a 3D – hybrid vehicle, which is a vehicle capable of moving in water, land and air environments, allowing the user to control the vehicle at long distances with video feedback. To achieve the purpose of this dissertation, it was developed an Android application to allow controlling the vehicle by using mobile networks to communicate. In the vehicle, besides the common electronics used in an unmanned vehicle (ESC’s, motors, batteries, controller board, etc.), it will be used a Raspberry Pi 2 model B with a 3rd Generation (3G) and 4th Generation (4G) dongle that will connect the vehicle to the internet, routing the messages coming from the controller board placed in the vehicle to the mobile application. It was also developed a server application to do the user management and exchange the messages coming from both platforms: vehicle and application.Os veículos não tripulados e as suas aplicações estão em forte crescimento. O uso de rádio controlo é a maneira mais comum de controlar estes tipos de veículos, sendo o método mais barato e simples de controlar um veículo não tripulado. Contudo, não têm uma interface visual que permita ao utilizador ver as informações do veículo, tais como o nível da bateria, a velocidade, distância, geolocalização, entre outros. Para ajudar com este problema, têm sido desenvolvidas algumas aplicações para dispositivos móveis e computadores, que permitem controlar e monitorizar este tipo de veículos. Para estabelecer a comunicação entre o dispositivo de controlo e o veículo, são frequentemente usados dongles para comunicar por rádio, Bluetooth ou Wi-Fi. Na maioria dos casos, estas tecnologias não possibilitam ao utilizador o controlo a longas distâncias, para além da linha de vista, e costumam ser focadas para o uso em multicopteros, possibilitando, na maioria dos casos, a ligação de um único veículo. O âmbito desta dissertação pretende estudar e desenvolver uma aplicação com elevada fiabilidade, capaz de controlar vários tipos de veículos, nomeadamente, veículos aéreos, terrestres e aquáticos. Esta aplicação irá permitir a ligação a vários veículos ao mesmo tempo, trocar facilmente o veiculo a controlar, recorrendo aos sistemas de comunicação móveis celulares, 3ª geração (3G ) e 4ª geração (4G) para garantir a comunicação entre a aplicação desenvolvida e o veículo não tripulado. Seguindo estes princípios, é possível controlar um veículo 3D hibrido (em modo de ar, terra e mar). Esta permite ao utilizador controlar o veículo a longas distâncias com o uso de uma transmissão de vídeo. Para alcançar o objetivo desta dissertação foi desenvolvida uma aplicação Android para possibilitar o controlo recorrendo às redes móveis celulares. No veículo, além da eletrónica habitual, para um veículo não tripulado (motores, ESC’s, baterias, etc.), será também utilizado um Raspberry Pi 2 modelo B com um dongle 3G/4G que liga o veículo, redirecionando as mensagens vindas da placa de controlo para a aplicação móvel. Para a comunicação entre a aplicação e o veículo foi também desenvolvida uma aplicação instalada no servidor que é responsável pela gestão de utilizadores e pela troca de mensagens vindas de ambas as plataformas: veículo e aplicação

    Implementation of the autonomous functionalities on an electric vehicle platform for research and education

    Get PDF
    Self-driving cars have recently captured the attention of researchers and car manufacturing markets. Depending upon the level of autonomy, the cars are made capable of traversing from one point to another autonomously. In order to achieve this, sophisticated sensors need to be utilized. A complex set of algorithms is required to use the sensors data in order to navigate the vehicle along the desired trajectory. Polaris is an electric vehicle platform provided for research and education purposes at Aalto University. The primary focus of the thesis was to utilize all the sensors provided in Polaris to their full potential. So that, essential data from each sensor is made available to be further utilized either by a specific automation algorithm or by some mapping routine. For any autonomous robotic system, the first step towards automation is localization. That is to determine the current position of the robot in a given environment. Different sensors mounted over the platform provide such measurements in different frames of reference. The thesis utilizes the GPS based localization solution combined with the LiDAR data and wheel odometry to perform autonomous tasks. Robot Operating System is used as the software development tool in thesis work. Autonomous tasks include the determination of the global as well as the local trajectories. The endpoints of the global trajectories are dictated by the set of predefined GPS waypoints. This is called target-point navigation. A path needs to be planned that avoids all the obstacles. Based on the planned path, a set of velocity commands are issued by the embedded controller. The velocity commands are then fed to the actuators to move the vehicle along the planned trajectory

    Marine Vessel Inspection as a Novel Field for Service Robotics: A Contribution to Systems, Control Methods and Semantic Perception Algorithms.

    Get PDF
    This cumulative thesis introduces a novel field for service robotics: the inspection of marine vessels using mobile inspection robots. In this thesis, three scientific contributions are provided and experimentally verified in the field of marine inspection, but are not limited to this type of application. The inspection scenario is merely a golden thread to combine the cumulative scientific results presented in this thesis. The first contribution is an adaptive, proprioceptive control approach for hybrid leg-wheel robots, such as the robot ASGUARD described in this thesis. The robot is able to deal with rough terrain and stairs, due to the control concept introduced in this thesis. The proposed system is a suitable platform to move inside the cargo holds of bulk carriers and to deliver visual data from inside the hold. Additionally, the proposed system also has stair climbing abilities, allowing the system to move between different decks. The robot adapts its gait pattern dynamically based on proprioceptive data received from the joint motors and based on the pitch and tilt angle of the robot's body during locomotion. The second major contribution of the thesis is an independent ship inspection system, consisting of a magnetic wall climbing robot for bulkhead inspection, a particle filter based localization method, and a spatial content management system (SCMS) for spatial inspection data representation and organization. The system described in this work was evaluated in several laboratory experiments and field trials on two different marine vessels in close collaboration with ship surveyors. The third scientific contribution of the thesis is a novel approach to structural classification using semantic perception approaches. By these methods, a structured environment can be semantically annotated, based on the spatial relationships between spatial entities and spatial features. This method was verified in the domain of indoor perception (logistics and household environment), for soil sample classification, and for the classification of the structural parts of a marine vessel. The proposed method allows the description of the structural parts of a cargo hold in order to localize the inspection robot or any detected damage. The algorithms proposed in this thesis are based on unorganized 3D point clouds, generated by a LIDAR within a ship's cargo hold. Two different semantic perception methods are proposed in this thesis. One approach is based on probabilistic constraint networks; the second approach is based on Fuzzy Description Logic and spatial reasoning using a spatial ontology about the environment
    corecore