37 research outputs found

    Self-calibration of turntable sequences from silhouettes

    Get PDF
    This paper addresses the problem of recovering both the intrinsic and extrinsic parameters of a camera from the silhouettes of an object in a turntable sequence. Previous silhouette-based approaches have exploited correspondences induced by epipolar tangents to estimate the image invariants under turntable motion and achieved a weak calibration of the cameras. It is known that the fundamental matrix relating any two views in a turntable sequence can be expressed explicitly in terms of the image invariants, the rotation angle, and a fixed scalar. It will be shown that the imaged circular points for the turntable plane can also be formulated in terms of the same image invariants and fixed scalar. This allows the imaged circular points to be recovered directly from the estimated image invariants, and provide constraints for the estimation of the imaged absolute conic. The camera calibration matrix can thus be recovered. A robust method for estimating the fixed scalar from image triplets is introduced, and a method for recovering the rotation angles using the estimated imaged circular points and epipoles is presented. Using the estimated camera intrinsics and extrinsics, a Euclidean reconstruction can be obtained. Experimental results on real data sequences are presented, which demonstrate the high precision achieved by the proposed method. © 2009 IEEE.published_or_final_versio

    1D camera geometry and its application to the self-calibration of circular motion sequences

    Get PDF
    This paper proposes a novel method for robustly recovering the camera geometry of an uncalibrated image sequence taken under circular motion. Under circular motion, all the camera centers lie on a circle and the mapping from the plane containing this circle to the horizon line observed in the image can be modelled as a 1D projection. A 2×2 homography is introduced in this paper to relate the projections of the camera centers in two 1D views. It is shown that the two imaged circular points of the motion plane and the rotation angle between the two views can be derived directly from such a homography. This way of recovering the imaged circular points and rotation angles is intrinsically a multiple view approach, as all the sequence geometry embedded in the epipoles is exploited in the estimation of the homography for each view pair. This results in a more robust method compared to those computing the rotation angles using adjacent views only. The proposed method has been applied to self-calibrate turntable sequences using either point features or silhouettes, and highly accurate results have been achieved. © 2008 IEEE.published_or_final_versio

    Reconstruction of Outdoor Sculptures from Silhouettes under Approximate Circular Motion of an Uncalibrated Hand-Held Camera

    Get PDF
    This paper presents a novel technique for reconstructing an outdoor sculpture from an uncalibrated image sequence acquired around it using a hand-held camera. The technique introduced here uses only the silhouettes of the sculpture for both motion estimation and model reconstruction, and no corner detection nor matching is necessary. This is very important as most sculptures are composed of smooth textureless surfaces, and hence their silhouettes are very often the only information available from their images. Besides, as opposed to previous works, the proposed technique does not require the camera motion to be perfectly circular (e.g., turntable sequence). It employs an image rectification step before the motion estimation step to obtain a rough estimate of the camera motion which is only approximately circular. A refinement process is then applied to obtain the true general motion of the camera. This allows the technique to handle large outdoor sculptures which cannot be rotated on a turntable, making it much more practical and flexible.postprin

    Self-calibration and motion recovery from silhouettes with two mirrors

    Get PDF
    LNCS v. 7724-7727 (pts. 1-4) entitled: Computer vision - ACCV 2012: 11th Asian Conference on Computer Vision ... 2012: revised selected papersThis paper addresses the problem of self-calibration and motion recovery from a single snapshot obtained under a setting of two mirrors. The mirrors are able to show five views of an object in one image. In this paper, the epipoles of the real and virtual cameras are firstly estimated from the intersection of the bitangent lines between corresponding images, from which we can easily derive the horizon of the camera plane. The imaged circular points and the angle between the mirrors can then be obtained from equal angles between the bitangent lines, by planar rectification. The silhouettes produced by reflections can be treated as a special circular motion sequence. With this observation, technique developed for calibrating a circular motion sequence can be exploited to simplify the calibration of a single-view two-mirror system. Different from the state-of-the-art approaches, only one snapshot is required in this work for self-calibrating a natural camera and recovering the poses of the two mirrors. This is more flexible than previous approaches which require at least two images. When more than a single image is available, each image can be calibrated independently and the problem of varying focal length does not complicate the calibration problem. After the calibration, the visual hull of the objects can be obtained from the silhouettes. Experimental results show the feasibility and the preciseness of the proposed approach. © 2013 Springer-Verlag.postprin

    Silhouette Coherence for Camera Calibration under Circular Motion

    Full text link

    Structure and motion estimation from apparent contours under circular motion

    Get PDF
    In this paper, we address the problem of recovering structure and motion from the apparent contours of a smooth surface. Fixed image features under circular motion and their relationships with the intrinsic parameters of the camera are exploited to provide a simple parameterization of the fundamental matrix relating any pair of views in the sequence. Such a parameterization allows a trivial initialization of the motion parameters, which all bear physical meaning. It also greatly reduces the dimension of the search space for the optimization problem, which can now be solved using only two epipolar tangents. In contrast to previous methods, the motion estimation algorithm introduced here can cope with incomplete circular motion and more widely spaced images. Existing techniques for model reconstruction from apparent contours are then reviewed and compared. Experiment on real data has been carried out and the 3D model reconstructed from the estimated motion is presented. © 2002 Elsevier Science B.V. All rights reserved.postprin

    1D Camera Geometry and Its Application to Circular Motion Estimation

    Full text link

    3D object reconstruction using computer vision : reconstruction and characterization applications for external human anatomical structures

    Get PDF
    Tese de doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    3D Dynamic Scene Reconstruction from Multi-View Image Sequences

    Get PDF
    A confirmation report outlining my PhD research plan is presented. The PhD research topic is 3D dynamic scene reconstruction from multiple view image sequences. Chapter 1 describes the motivation and research aims. An overview of the progress in the past year is included. Chapter 2 is a review of volumetric scene reconstruction techniques and Chapter 3 is an in-depth description of my proposed reconstruction method. The theory behind the proposed volumetric scene reconstruction method is also presented, including topics in projective geometry, camera calibration and energy minimization. Chapter 4 presents the research plan and outlines the future work planned for the next two years

    3D surface reconstruction for lower limb prosthetic model using modified radon transform

    Get PDF
    Computer vision has received increased attention for the research and innovation on three-dimensional surface reconstruction with aim to obtain accurate results. Although many researchers have come up with various novel solutions and feasibility of the findings, most require the use of sophisticated devices which is computationally expensive. Thus, a proper countermeasure is needed to resolve the reconstruction constraints and create an algorithm that is able to do considerably fast reconstruction by giving attention to devices equipped with appropriate specification, performance and practical affordability. This thesis describes the idea to realize three-dimensional surface of the residual limb models by adopting the technique of tomographic imaging coupled with the strategy based on multiple-views from a digital camera and a turntable. The surface of an object is reconstructed from uncalibrated two-dimensional image sequences of thirty-six different projections with the aid of Radon transform algorithm and shape-from-silhouette. The results show that the main objective to reconstruct three-dimensional surface of lower limb model has been successfully achieved with reasonable accuracy as the starting point to reconstruct three-dimensional surface and extract digital reading of an amputated lower limb model where the maximum percent error obtained from the computation is approximately 3.3 % for the height whilst 7.4%, 7.9% and 8.1% for the diameters at three specific heights of the objects. It can be concluded that the reconstruction of three-dimensional surface for the developed method is particularly dependent to the effects the silhouette generated where high contrast two-dimensional images contribute to higher accuracy of the silhouette extraction. The advantage of the concept presented in this thesis is that it can be done with simple experimental setup and the reconstruction of three-dimensional model neither involves expensive equipment nor require any service by an expert to handle sophisticated mechanical scanning system
    corecore