1,283 research outputs found

    A modal approach to hyper-redundant manipulator kinematics

    Get PDF
    This paper presents novel and efficient kinematic modeling techniques for “hyper-redundant” robots. This approach is based on a “backbone curve” that captures the robot's macroscopic geometric features. The inverse kinematic, or “hyper-redundancy resolution,” problem reduces to determining the time varying backbone curve behavior. To efficiently solve the inverse kinematics problem, the authors introduce a “modal” approach, in which a set of intrinsic backbone curve shape functions are restricted to a modal form. The singularities of the modal approach, modal non-degeneracy conditions, and modal switching are considered. For discretely segmented morphologies, the authors introduce “fitting” algorithms that determine the actuator displacements that cause the discrete manipulator to adhere to the backbone curve. These techniques are demonstrated with planar and spatial mechanism examples. They have also been implemented on a 30 degree-of-freedom robot prototype

    Fast Manipulability Maximization Using Continuous-Time Trajectory Optimization

    Full text link
    A significant challenge in manipulation motion planning is to ensure agility in the face of unpredictable changes during task execution. This requires the identification and possible modification of suitable joint-space trajectories, since the joint velocities required to achieve a specific endeffector motion vary with manipulator configuration. For a given manipulator configuration, the joint space-to-task space velocity mapping is characterized by a quantity known as the manipulability index. In contrast to previous control-based approaches, we examine the maximization of manipulability during planning as a way of achieving adaptable and safe joint space-to-task space motion mappings in various scenarios. By representing the manipulator trajectory as a continuous-time Gaussian process (GP), we are able to leverage recent advances in trajectory optimization to maximize the manipulability index during trajectory generation. Moreover, the sparsity of our chosen representation reduces the typically large computational cost associated with maximizing manipulability when additional constraints exist. Results from simulation studies and experiments with a real manipulator demonstrate increases in manipulability, while maintaining smooth trajectories with more dexterous (and therefore more agile) arm configurations.Comment: In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS'19), Macau, China, Nov. 4-8, 201

    Space robotics: Recent accomplishments and opportunities for future research

    Get PDF
    The Langley Guidance, Navigation, and Control Technical Committee (GNCTC) was one of six technical committees created in 1991 by the Chief Scientist, Dr. Michael F. Card. During the kickoff meeting Dr. Card charged the chairmen to: (1) establish a cross-Center committee; (2) support at least one workshop in a selected discipline; and (3) prepare a technical paper on recent accomplishments in the discipline and on opportunities for future research. The Guidance, Navigation, and Control Committee was formed and selected for focus on the discipline of Space robotics. This report is a summary of the committee's assessment of recent accomplishments and opportunities for future research. The report is organized as follows. First is an overview of the data sources used by the committee. Next is a description of technical needs identified by the committee followed by recent accomplishments. Opportunities for future research ends the main body of the report. It includes the primary recommendation of the committee that NASA establish a national space facility for the development of space automation and robotics, one element of which is a telerobotic research platform in space. References 1 and 2 are the proceedings of two workshops sponsored by the committee during its June 1991, through May 1992 term. The focus of the committee for the June 1992 - May 1993 term will be to further define to the recommended platform in space and to add an additional discipline which includes aircraft related GN&C issues. To the latter end members performing aircraft related research will be added to the committee. (A preliminary assessment of future opportunities in aircraft-related GN&C research has been included as appendix A.

    Computational neural learning formalisms for manipulator inverse kinematics

    Get PDF
    An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints

    Kinematically Redundant Octahedral Motion Platform for Virtual Reality Simulations

    Full text link
    We propose a novel design of a parallel manipulator of Stewart Gough type for virtual reality application of single individuals; i.e. an omni-directional treadmill is mounted on the motion platform in order to improve VR immersion by giving feedback to the human body. For this purpose we modify the well-known octahedral manipulator in a way that it has one degree of kinematical redundancy; namely an equiform reconfigurability of the base. The instantaneous kinematics and singularities of this mechanism are studied, where especially "unavoidable singularities" are characterized. These are poses of the motion platform, which can only be realized by singular configurations of the mechanism despite its kinematic redundancy.Comment: 13 pages, 6 figure

    Kinematically redundant robot manipulators

    Get PDF
    Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques

    Global kinematics for manipulator planning and control

    Get PDF
    This paper reviews one method of global kinematic analysis, based on a manifold mapping reformulation of manipulator kinematics, which is suitable for both non-redundant and redundant serial chain manipulators. Two applications of this approach are considered: the relationship between changing pose and singularities for non-redundant manipulators and the homotopy class of redundant manipulator self-motions. The first relationship has important implications for non-redundant, manipulator regrasping operations. Variations in redundant manipulator self-motion homotopy can have an important effect on motion and redundancy resolution planning, since they can lead to algorithmic singularities and unexpected loss of manipulator capabilities

    Man-machine cooperation in advanced teleoperation

    Get PDF
    Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints

    On the false positives and false negatives of the Jacobian Matrix in kinematically redundant parallel mechanisms

    Get PDF
    The Jacobian matrix is a highly popular tool for the control and performance analysis of closed-loop robots. Its usefulness in parallel mechanisms is certainly apparent, and its application to solve motion planning problems, or other higher level questions, has been seldom queried, or limited to non-redundant systems. In this paper, we discuss the shortcomings of the use of the Jacobian matrix under redundancy, in particular when applied to kinematically redundant parallel architectures with non-serially connected actuators. These architectures have become fairly popular recently as they allow the end-effector to achieve full rotations, which is an impossible task with traditional topologies. The problems with the Jacobian matrix in these novel systems arise from the need to eliminate redundant variables when forming it, resulting in both situations where the Jacobian incorrectly identifies singularities (false positive), and where it fails to identify singularities (false negative). These issues have thus far remained unaddressed in the literature. We highlight these limitations herein by demonstrating several cases using numerical examples of both planar and spatial architectures
    corecore