20,187 research outputs found

    How to Deploy a Wire with a Robotic Platform: Learning from Human Visual Demonstrations

    Get PDF
    In this paper, we address the problem of deploying a wire along a specific path selected by an unskilled user. The robot has to learn the selected path and pass a wire through the peg table by using the same tool. The main contribution regards the hybrid use of Cartesian positions provided by a learning procedure and joint positions obtained by inverse kinematics and motion planning. Some constraints are introduced to deal with non-rigid material without breaks or knots. We took into account a series of metrics to evaluate the robot learning capabilities, all of them over performed the targets

    Energy-based trajectory tracking and vibration control for multilink highly flexible manipulators

    Get PDF
    In this paper, a discrete model is adopted, as proposed by Hencky for elastica based on rigid bars and lumped rotational springs, to design the control of a lightweight planar manipulator with multiple highly flexible links. This model is particularly suited to deal with nonlinear equations of motion as those associated with multilink robot arms, because it does not include any simplification due to linearization, as in the assumed modes method. The aim of the control is to track a trajectory of the end effector of the robot arm, without the onset of vibrations. To this end, an energy-based method is proposed. Numerical simulations show the effectiveness of the presented approach

    Qualitative design and implementation of human-robot spatial interactions

    Get PDF
    Despite the large number of navigation algorithms available for mobile robots, in many social contexts they often exhibit inopportune motion behaviours in proximity of people, often with very "unnatural" movements due to the execution of segmented trajectories or the sudden activation of safety mechanisms (e.g., for obstacle avoidance). We argue that the reason of the problem is not only the difficulty of modelling human behaviours and generating opportune robot control policies, but also the way human-robot spatial interactions are represented and implemented. In this paper we propose a new methodology based on a qualitative representation of spatial interactions, which is both flexible and compact, adopting the well-defined and coherent formalization of Qualitative Trajectory Calculus (QTC). We show the potential of a QTC-based approach to abstract and design complex robot behaviours, where the desired robot's behaviour is represented together with its actual performance in one coherent approach, focusing on spatial interactions rather than pure navigation problems

    High speed precision motion strategies for lightweight structures

    Get PDF
    Work during the recording period proceeded along the lines of the proposal, i.e., three aspects of high speed motion planning and control of flexible structures were explored: fine motion control, gross motion planning and control, and automation using light weight arms. In addition, modeling the large manipulator arm to be used in experiments and theory has lead to some contributions in that area. These aspects are reported below. Conference, workshop and journal submissions, and presentations related to this work were seven in number, and are listed. Copies of written papers and abstracts are included

    A trajectory planning scheme for spacecraft in the space station environment

    Get PDF
    Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is special because the space station will define a multivehicle environment in space. The optimization surface is a complex nonlinear function of the initial conditions of the chase and target crafts. Small permutations in the input conditions can result in abrupt changes to the optimization surface. Since no prior knowledge about the number or location of local minima on the surface is available, the optimization must be capable of functioning on a multimodal surface. It was reported in the literature that the simulated annealing algorithm is more effective on such surfaces than descent techniques using random starting points. The simulated annealing optimization was found to be capable of identifying a minimum fuel, two-burn trajectory subject to four constraints which are integrated into the optimization using a barrier method. The computations required to solve the optimization are fast enough that missions could be planned on board the space station. Potential applications for on board planning of missions are numerous. Future research topics may include optimal planning of multi-waypoint maneuvers using a knowledge base to guide the optimization, and a study aimed at developing robust annealing schedules for potential on board missions
    • …
    corecore