4,453 research outputs found

    Contact Optimization for Non-Prehensile Loco-Manipulation via Hierarchical Model Predictive Control

    Full text link
    Recent studies on quadruped robots have focused on either locomotion or mobile manipulation using a robotic arm. Legged robots can manipulate heavier and larger objects using non-prehensile manipulation primitives, such as planar pushing, to drive the object to the desired location. In this paper, we present a novel hierarchical model predictive control (MPC) for contact optimization of the manipulation task. Using two cascading MPCs, we split the loco-manipulation problem into two parts: the first to optimize both contact force and contact location between the robot and the object, and the second to regulate the desired interaction force through the robot locomotion. Our method is successfully validated in both simulation and hardware experiments. While the baseline locomotion MPC fails to follow the desired trajectory of the object, our proposed approach can effectively control both object's position and orientation with minimal tracking error. This capability also allows us to perform obstacle avoidance for both the robot and the object during the loco-manipulation task.Comment: 7 pages, 9 figure

    ARMP: Autoregressive Motion Planning for Quadruped Locomotion and Navigation in Complex Indoor Environments

    Full text link
    Generating natural and physically feasible motions for legged robots has been a challenging problem due to its complex dynamics. In this work, we introduce a novel learning-based framework of autoregressive motion planner (ARMP) for quadruped locomotion and navigation. Our method can generate motion plans with an arbitrary length in an autoregressive fashion, unlike most offline trajectory optimization algorithms for a fixed trajectory length. To this end, we first construct the motion library by solving a dense set of trajectory optimization problems for diverse scenarios and parameter settings. Then we learn the motion manifold from the dataset in a supervised learning fashion. We show that the proposed ARMP can generate physically plausible motions for various tasks and situations. We also showcase that our method can be successfully integrated with the recent robot navigation frameworks as a low-level controller and unleash the full capability of legged robots for complex indoor navigation.Comment: Submitted to IRO

    RLOC: Terrain-Aware Legged Locomotion using Reinforcement Learning and Optimal Control

    Full text link
    We present a unified model-based and data-driven approach for quadrupedal planning and control to achieve dynamic locomotion over uneven terrain. We utilize on-board proprioceptive and exteroceptive feedback to map sensory information and desired base velocity commands into footstep plans using a reinforcement learning (RL) policy trained in simulation over a wide range of procedurally generated terrains. When ran online, the system tracks the generated footstep plans using a model-based controller. We evaluate the robustness of our method over a wide variety of complex terrains. It exhibits behaviors which prioritize stability over aggressive locomotion. Additionally, we introduce two ancillary RL policies for corrective whole-body motion tracking and recovery control. These policies account for changes in physical parameters and external perturbations. We train and evaluate our framework on a complex quadrupedal system, ANYmal version B, and demonstrate transferability to a larger and heavier robot, ANYmal C, without requiring retraining.Comment: 19 pages, 15 figures, 6 tables, 1 algorithm, submitted to T-RO; under revie

    Space vehicle thermal testing: Principles, practices and effectiveness

    Get PDF
    Component qualification and acceptance temperatures are derived from worst case thermal analyses and analytic uncertainty margin subject to certain specified temperature extremes. Temperature requirements are shown for equipment operation within specification and for survival and turn-on (need not operate within specification, but must not experience any degradation when returned to operational range). Temperature excursions for most equipment are seen to be 20 to 50 C above and below room temperature. Components without active electronics which are mounted outboard, such as solar arrays and antennas, are usually designed to withstand wider temperature excursions, particularly at the cold end. Batteries are tightly controlled at cold temperatures to increase life. Payload components such as extremely accurate clocks for precise navigation are controlled over a relatively narrow temperature range

    EXPRESSIVE THERAPIES CONTINUUM-INFORMED EVALUATION OF THREE RESOURCE-ORIENTED RECEPTIVE AND ACTIVE MUSIC THERAPY TECHNIQUES IN CANCER PATIENTS IN PSYCHOSOCIAL REHABILITATION PROGRAMME

    Get PDF
    Expressive Therapies Continuum (ETC), a model posed by Lusebrink and widely used in arts therapies, stipulates that human being is perceiving the world and processing the information in three modes – motion (kinesthetic-sensory perception), emotion (perceptual-emotional perception) and thought (cognitive-symbolic perception), and that optimally functioning person can freely function in all the modes, can slide between the poles of each of the mode and can integrate the elements from various modes and poles. And vice versa - difficulty or inability to function or being stuck in certain modes, can indicate to malfunction and even psychopathology. If that is the case - purposeful integration of various functions by offering expressive activity promoting utilisation of various functions of the ETC, can promote the optimal functioning. In order to find out the capacity of the three resource-based music therapy activities – 1) receptive music therapy activity, 2) semi-structured musical improvisation, 3) song-writing activity - to stimulate the utilisation of specific levels and polarities of the ETC, participants (n=24 cancer patients participating in the psychosocial rehabilitation programme) were asked to assess the elements of the ETC they applied while executing each of the activities. Results of the study show that during the receptive music therapy activity participants mostly used the affective, symbolic and sensory function, during the song-writing activity the mostly used all ETC functions except for sensory, but musical improvisation provoked application of all the ETC functions, and therefore turned out as ultimate activity, capable of integrating all the modes of perception and information processing.

    RL + Model-based Control: Using On-demand Optimal Control to Learn Versatile Legged Locomotion

    Full text link
    This letter presents a versatile control method for dynamic and robust legged locomotion that integrates model-based optimal control with reinforcement learning (RL). Our approach involves training an RL policy to imitate reference motions generated on-demand through solving a finite-horizon optimal control problem. This integration enables the policy to leverage human expertise in generating motions to imitate while also allowing it to generalize to more complex scenarios that require a more complex dynamics model. Our method successfully learns control policies capable of generating diverse quadrupedal gait patterns and maintaining stability against unexpected external perturbations in both simulation and hardware experiments. Furthermore, we demonstrate the adaptability of our method to more complex locomotion tasks on uneven terrain without the need for excessive reward shaping or hyperparameter tuning.Comment: 8 pages. 8 figures. The supplementary video is available in https://youtu.be/gXDP87yVq4

    Extreme Parkour with Legged Robots

    Full text link
    Humans can perform parkour by traversing obstacles in a highly dynamic fashion requiring precise eye-muscle coordination and movement. Getting robots to do the same task requires overcoming similar challenges. Classically, this is done by independently engineering perception, actuation, and control systems to very low tolerances. This restricts them to tightly controlled settings such as a predetermined obstacle course in labs. In contrast, humans are able to learn parkour through practice without significantly changing their underlying biology. In this paper, we take a similar approach to developing robot parkour on a small low-cost robot with imprecise actuation and a single front-facing depth camera for perception which is low-frequency, jittery, and prone to artifacts. We show how a single neural net policy operating directly from a camera image, trained in simulation with large-scale RL, can overcome imprecise sensing and actuation to output highly precise control behavior end-to-end. We show our robot can perform a high jump on obstacles 2x its height, long jump across gaps 2x its length, do a handstand and run across tilted ramps, and generalize to novel obstacle courses with different physical properties. Parkour videos at https://extreme-parkour.github.io/Comment: Website and videos at https://extreme-parkour.github.io

    Multiple-objective sensor management and optimisation

    No full text
    One of the key challenges associated with exploiting modern Autonomous Vehicle technology for military surveillance tasks is the development of Sensor Management strategies which maximise the performance of the on-board Data-Fusion systems. The focus of this thesis is the development of Sensor Management algorithms which aim to optimise target tracking processes. Three principal theoretical and analytical contributions are presented which are related to the manner in which such problems are formulated and subsequently solved.Firstly, the trade-offs between optimising target tracking and other system-level objectives relating to expected operating lifetime are explored in an autonomous ground sensor scenario. This is achieved by modelling the observer trajectory control design as a probabilistic, information-theoretic, multiple-objective optimisation problem. This novel approach explores the relationships between the changes in sensor-target geometry that are induced by tracking performance measures and those relating to power consumption. This culminates in a novel observer trajectory control algorithm based onthe minimax approach.The second contribution is an analysis of the propagation of error through a limited-lookahead sensor control feedback loop. In the last decade, it has been shown that the use of such non-myopic (multiple-step) planning strategies can lead to superior performance in many Sensor Management scenarios. However, relatively little is known about the performance of strategies which use different horizon lengths. It is shown that, in the general case, planning performance is a function of the length of the horizon over which the optimisation is performed. While increasing the horizon maximises the chances of achieving global optimality, by revealing information about the substructureof the decision space, it also increases the impact of any prediction error, approximations, or unforeseen risk present within the scenario. These competing mechanisms aredemonstrated using an example tracking problem. This provides the motivation for a novel sensor control methodology that employs an adaptive length optimisation horizon. A route to selecting the optimal horizon size is proposed, based on a new non-myopic risk equilibrium which identifies the point where the two competing mechanisms are balanced.The third area of contribution concerns the development of a number of novel optimisation algorithms aimed at solving the resulting sequential decision making problems. These problems are typically solved using stochastic search methods such as Genetic Algorithms or Simulated Annealing. The techniques presented in this thesis are extensions of the recently proposed Repeated Weighted Boosting Search algorithm. In its originalform, it is only applicable to continuous, single-objective, ptimisation problems. The extensions facilitate application to mixed search spaces and Pareto multiple-objective problems. The resulting algorithms have performance comparable with Genetic Algorithm variants, and offer a number of advantages such as ease of implementation and limited tuning requirements

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems
    corecore