1,389 research outputs found

    Motion optimization and parameter identification for a human and lower-back exoskeleton model

    Get PDF
    Designing an exoskeleton to reduce the risk of low-back injury during lifting is challenging. Computational models of the human-robot system coupled with predictive movement simulations can help to simplify this design process. Here, we present a study that models the interaction between a human model actuated by muscles and a lower-back exoskeleton. We provide a computational framework for identifying the spring parameters of the exoskeleton using an optimal control approach and forward-dynamics simulations. This is applied to generate dynamically consistent bending and lifting movements in the sagittal plane. Our computations are able to predict motions and forces of the human and exoskeleton that are within the torque limits of a subject. The identified exoskeleton could also yield a considerable reduction of the peak lower-back torques as well as the cumulative lower-back load during the movements. This work is relevant to the research communities working on human-robot interaction, and can be used as a basis for a better human-centered design process

    Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton

    Full text link
    This paper presents design principles for comfort-centered wearable robots and their application in a lightweight and backdrivable knee exoskeleton. The mitigation of discomfort is treated as mechanical design and control issues and three solutions are proposed in this paper: 1) a new wearable structure optimizes the strap attachment configuration and suit layout to ameliorate excessive shear forces of conventional wearable structure design; 2) rolling knee joint and double-hinge mechanisms reduce the misalignment in the sagittal and frontal plane, without increasing the mechanical complexity and inertia, respectively; 3) a low impedance mechanical transmission reduces the reflected inertia and damping of the actuator to human, thus the exoskeleton is highly-backdrivable. Kinematic simulations demonstrate that misalignment between the robot joint and knee joint can be reduced by 74% at maximum knee flexion. In experiments, the exoskeleton in the unpowered mode exhibits 1.03 Nm root mean square (RMS) low resistive torque. The torque control experiments demonstrate 0.31 Nm RMS torque tracking error in three human subjects.Comment: 8 pages, 16figures, Journa

    Biomechanical Analysis of Stoop and Free-Style Squat Lifting and Lowering with a Generic Back-Support Exoskeleton Model

    Get PDF
    Musculoskeletal disorders (MSDs) induced by industrial manual handling tasks are a major issue for workers and companies. As flexible ergonomic solutions, occupational exoskeletons can decrease critically high body stress in situations of awkward postures and motions. Biomechanical models with detailed anthropometrics and motions help us to acquire a comprehension of person- and application-specifics by considering the intended and unintended effects, which is crucial for effective implementation. In the present model-based analysis, a generic back-support exoskeleton model was introduced and applied to the motion data of one male subject performing symmetric and asymmetric dynamic manual handling tasks. Different support modes were implemented with this model, including support profiles typical of passive and active systems and an unconstrained optimal support mode used for reference to compare and quantify their biomechanical effects. The conducted simulations indicate that there is a high potential to decrease the peak compression forces in L4/L5 during the investigated heavy loaded tasks for all motion sequences and exoskeleton support modes (mean reduction of 13.3% without the optimal support mode). In particular, asymmetric motions (mean reduction of 14.7%) can be relieved more than symmetric ones (mean reduction of 11.9%) by the exoskeleton support modes without the optimal assistance. The analysis of metabolic energy consumption indicates a high dependency on lifting techniques for the effectiveness of the exoskeleton support. While the exoskeleton support substantially reduces the metabolic cost for the free-squat motions, a slightly higher energy consumption was found for the symmetric stoop motion technique with the active and optimal support mode

    Subject-exoskeleton contact model calibration leads to accurate interaction force predictions

    Get PDF
    Knowledge of human–exoskeleton interaction forces is crucial to assess user comfort and effectiveness of the interaction. The subject-exoskeleton collaborative movement and its interaction forces can be predicted in silico using computational modeling techniques. We developed an optimal control framework that consisted of three phases. First, the foot-ground (Phase A) and the subject-exoskeleton (Phase B) contact models were calibrated using three experimental sit-to-stand trials. Then, the collaborative movement and the subject-exoskeleton interaction forces, of six different sit-to-stand trials were predicted (Phase C). The results show that the contact models were able to reproduce experimental kinematics of calibration trials (mean root mean square differences - RMSD - coordinates = 1.1° and velocities = 6.8°/s), ground reaction forces (mean RMSD= 22.9 N), as well as the interaction forces at the pelvis, thigh, and shank (mean RMSD = 5.4 N). Phase C could predict the collaborative movements of prediction trials (mean RMSD coordinates = 3.5° and velocities = 15.0°/s), and their subject-exoskeleton interaction forces (mean RMSD = 13.1° N). In conclusion, this optimal control framework could be used while designing exoskeletons to have in silico knowledge of new optimal movements and their interaction forces.Postprint (author's final draft

    Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions.

    Get PDF
    Researchers have explored a variety of neurorehabilitation approaches to restore normal walking function following a stroke. However, there is currently no objective means for prescribing and implementing treatments that are likely to maximize recovery of walking function for any particular patient. As a first step toward optimizing neurorehabilitation effectiveness, this study develops and evaluates a patient-specific synergy-controlled neuromusculoskeletal simulation framework that can predict walking motions for an individual post-stroke. The main question we addressed was whether driving a subject-specific neuromusculoskeletal model with muscle synergy controls (5 per leg) facilitates generation of accurate walking predictions compared to a model driven by muscle activation controls (35 per leg) or joint torque controls (5 per leg). To explore this question, we developed a subject-specific neuromusculoskeletal model of a single high-functioning hemiparetic subject using instrumented treadmill walking data collected at the subject's self-selected speed of 0.5 m/s. The model included subject-specific representations of lower-body kinematic structure, foot-ground contact behavior, electromyography-driven muscle force generation, and neural control limitations and remaining capabilities. Using direct collocation optimal control and the subject-specific model, we evaluated the ability of the three control approaches to predict the subject's walking kinematics and kinetics at two speeds (0.5 and 0.8 m/s) for which experimental data were available from the subject. We also evaluated whether synergy controls could predict a physically realistic gait period at one speed (1.1 m/s) for which no experimental data were available. All three control approaches predicted the subject's walking kinematics and kinetics (including ground reaction forces) well for the model calibration speed of 0.5 m/s. However, only activation and synergy controls could predict the subject's walking kinematics and kinetics well for the faster non-calibration speed of 0.8 m/s, with synergy controls predicting the new gait period the most accurately. When used to predict how the subject would walk at 1.1 m/s, synergy controls predicted a gait period close to that estimated from the linear relationship between gait speed and stride length. These findings suggest that our neuromusculoskeletal simulation framework may be able to bridge the gap between patient-specific muscle synergy information and resulting functional capabilities and limitations

    Comprehensive modelling and simulation towards the identification of critical parameters for evaluation of exoskeleton-centred workplaces

    Get PDF
    Abstract Workers are key enablers of flexibility and productivity in Manufacturing, especially in processes where full automation is not feasible. Such workplaces are often characterized by manual manipulation of heavy loads, hazardous conditions and high level of vibrations. Exoskeletons, fusing flexibility, intelligence and human-centered control with the high payload, endurance, precision and sensor-based guidance represent enabling technologies to cope this challenge. In this paper critical parameters for the evaluation of exoskeleton-centered workplaces are identified, as core elements of the methodology for evaluating the exoskeleton-centered workplaces. Comprehensive modelling, simulation and analysis of ergonomics and process parameters represent the foundations of the methodology

    Identification of Motion Controllers In Human Standing And Walking

    Get PDF
    The method of trajectory optimization with direct collocation has the potential to extract generalized and realistic motion controllers from long duration movement data without requiring extensive measurement equipment. Knowing motion controllers not only can improve clinic assessments on locomotor disabilities, but also can inspire the control of powered exoskeletons and prostheses for better performance. Three aims were included in this dissertation. Aim 1 was to apply and validate the trajectory optimization for identification of the postural controllers in standing balance. The trajectory optimization approach was first validated on the simulated standing balance data and demonstrated that it can extract the correct postural control parameters. Then, six types of postural feedback controllers, from simple linear to complex nonlinear, were identified on six young adults’ motion data that was collected in a standing balance experiment. Results indicated that nonlinear controllers with multiple time delay paths can best explain their balance motions. A stochastic trajectory optimization approach was proposed that can help finding practically stable controllers in the identification process. Aim 2 focused on the foot placement control in walking. Foot placement controllers were successfully identified through the trajectory optimization method on nine young adults’ perturbed walking motions. It was shown that a linear controller with pelvis position and velocity feedback, suggested by the linear inverted pendulum model, was not sufficient to explain their foot placement among multiple walking speeds. Nonlinear controllers or more feedback signals, such as pelvis acceleration, are needed. Foot placement control was applied on a powered leg exoskeleton to control its legs’ swing motion. Two healthy participants were able to achieve stable walking with the controlled exoskeleton. v Results suggested that the foot placement controller helped decelerate the swing motion at late swing. In Aim 3, the trajectory optimization method was used to identify joint impedance properties in walking. Results of the synthetic study showed that relatively close impedance parameters can be identified. Then, a preliminary study was done to identify the ankle joint impedance properties of two participants at two walking speeds. The identified impedance properties were close to previous studies and consistent between different participants and walking speeds

    Design methodology of an active back-support exoskeleton with adaptable backbone-based kinematics

    Get PDF
    Abstract Manual labor is still strongly present in many industrial contexts (such as aerospace industry). Such operations commonly involve onerous tasks requiring to work in non-ergonomic conditions and to manipulate heavy parts. As a result, work-related musculoskeletal disorders are a major problem to tackle in workplace. In particular, back is one of the most affected regions. To solve such issue, many efforts have been made in the design and control of exoskeleton devices, relieving the human from the task load. Besides upper limbs and lower limbs exoskeletons, back-support exoskeletons have been also investigated, proposing both passive and active solutions. While passive solutions cannot empower the human's capabilities, common active devices are rigid, without the possibility to track the human's spine kinematics while executing the task. The here proposed paper describes a methodology to design an active back-support exoskeleton with backbone-based kinematics. On the basis of the (easily implementable) scissor hinge mechanism, a one-degree of freedom device has been designed. In particular, the resulting device allows tracking the motion of a reference vertebra, i.e., the vertebrae in the correspondence of the connection between the scissor hinge mechanism and the back of the operator. Therefore, the proposed device is capable to adapt to the human posture, guaranteeing the support while relieving the person from the task load. In addition, the proposed mechanism can be easily optimized and realized for different subjects, involving a subject-based design procedure, making possible to adapt its kinematics to track the spine motion of the specific user. A prototype of the proposed device has been 3D-printed to show the achieved kinematics. Preliminary tests for discomfort evaluation show the potential of the proposed methodology, foreseeing extensive subjects-based optimization, realization and testing of the device

    System Identification of Bipedal Locomotion in Robots and Humans

    Get PDF
    The ability to perform a healthy walking gait can be altered in numerous cases due to gait disorder related pathologies. The latter could lead to partial or complete mobility loss, which affects the patients’ quality of life. Wearable exoskeletons and active prosthetics have been considered as a key component to remedy this mobility loss. The control of such devices knows numerous challenges that are yet to be addressed. As opposed to fixed trajectories control, real-time adaptive reference generation control is likely to provide the wearer with more intent control over the powered device. We propose a novel gait pattern generator for the control of such devices, taking advantage of the inter-joint coordination in the human gait. Our proposed method puts the user in the control loop as it maps the motion of healthy limbs to that of the affected one. To design such control strategy, it is critical to understand the dynamics behind bipedal walking. We begin by studying the simple compass gait walker. We examine the well-known Virtual Constraints method of controlling bipedal robots in the image of the compass gait. In addition, we provide both the mechanical and control design of an affordable research platform for bipedal dynamic walking. We then extend the concept of virtual constraints to human locomotion, where we investigate the accuracy of predicting lower limb joints angular position and velocity from the motion of the other limbs. Data from nine healthy subjects performing specific locomotion tasks were collected and are made available online. A successful prediction of the hip, knee, and ankle joints was achieved in different scenarios. It was also found that the motion of the cane alone has sufficient information to help predict good trajectories for the lower limb in stairs ascent. Better estimates were obtained using additional information from arm joints. We also explored the prediction of knee and ankle trajectories from the motion of the hip joints
    • …
    corecore