182 research outputs found

    Dense Visual Odometry Using Genetic Algorithm

    Full text link
    Our work aims to estimate the camera motion mounted on the head of a mobile robot or a moving object from RGB-D images in a static scene. The problem of motion estimation is transformed into a nonlinear least squares function. Methods for solving such problems are iterative. Various classic methods gave an iterative solution by linearizing this function. We can also use the metaheuristic optimization method to solve this problem and improve results. In this paper, a new algorithm is developed for visual odometry using a sequence of RGB-D images. This algorithm is based on a genetic algorithm. The proposed iterative genetic algorithm searches using particles to estimate the optimal motion and then compares it to the traditional methods. To evaluate our method, we use the root mean square error to compare it with the based energy method and another metaheuristic method. We prove the efficiency of our innovative algorithm on a large set of images.Comment: 9 pages, 9 figure

    Novel applications, model, and methods in magnetic resonance elastography

    Full text link
    Magnetic Resonance Elastography (MRE) is a non-invasive imaging technique that maps and quantifies the mechanical properties of soft tissue related to the propagation and attenuation of shear waves. There is considerable interest in whether MRE can bring new insight into pathologies. Brain in particular has been of utmost interest in the recent years. Brain tumors, Alzheimer's disease, and Multiple Sclerosis have all been subjects of MRE studies. This thesis addresses four aspects of MRE, ranging from novel applications in brain MRE, to physiological interpretation of measured mechanical properties, to improvements in MRE technology. First, we present longitudinal measurements of the mechanical properties of glioblastoma tumorigenesis and progression in a mouse model. Second, we present a new finding from our group regarding a localized change in mechanical properties of neural tissue when functionally stimulated. Third, we address contradictory results in the literature regarding the effects of vascular pressure on shear wave speed in soft tissues. To reconcile these observations, a mathematical model based on poro-hyperelasticity is used. Finally, we consider a part of MRE that requires inferring mechanical properties from MR measurements of vibration patterns in tissue. We present improvements to MRE reconstruction methods by developing and using an advanced variational formulation of the forward problem for shear wave propagation

    Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo

    Get PDF
    Photoacoustic (PA) computed tomography (PACT) benefits from genetically encoded probes with photochromic behavior, which dramatically increase detection sensitivity and specificity through photoswitching and differential imaging. Starting with a DrBphP bacterial phytochrome, we have engineered a near-infrared photochromic probe, DrBphP-PCM, which is superior to the full-length RpBphP1 phytochrome previously used in differential PACT. DrBphP-PCM has a smaller size, better folding, and higher photoswitching contrast. We have imaged both DrBphP-PCM and RpBphP1 simultaneously on the basis of their unique signal decay characteristics, using a reversibly switchable single-impulse panoramic PACT (RS-SIP-PACT) with a single wavelength excitation. The simple structural organization of DrBphPPCM allows engineering a bimolecular PA complementation reporter, a split version of DrBphP-PCM, termed DrSplit. DrSplit enables PA detection of protein-protein interactions in deep-seated mouse tumors and livers, achieving 125-mu m spatial resolution and 530-cell sensitivity in vivo. The combination of RS-SIP-PACT with DrBphP-PCM and DrSplit holds great potential for noninvasive multi-contrast deep-tissue functional imaging.Peer reviewe

    Intravital imaging in small animals

    Get PDF

    Optical Imaging

    Get PDF
    Optical Coherence Tomography (OCT)We describe the fundamental concept of optical coherence tomography (OCT) and discuss the two main working principles time domain OCT and frequency domain OCT. Then, we review extended functionalities including spectrally and polarization-resolved OCT as well as Doppler-OCT and show concepts for contrast enhancement. Based on these fundamentals, we demonstrate the potential of OCT for small animal imaging on the basis of exemplary studies on retinal imaging and lung imaging.Optoacoustic ImagingThis chapter deals with the fascinating topic of optoacoustic imaging, a recent powerful addition to the arsenal of in vivo functional and molecular small animal imaging. Due to its hybrid nature, involving optical excitation and ultrasonic detection, optoacoustics overcomes the imaging depth limitations of optical microscopy related to light scattering in living tissues while further benefiting from the compelling advantages of optical contrast. To this end, optoacoustic imaging has been shown capable of delivering multiple types of imaging contrast (structural, functional, kinetic, molecular) within a single imaging modality. It can further deliver images with high spatiotemporal resolution that rivals performance of other well-established whole-body imaging modalities. As such, optoacoustics can play a vital role in biomedical research, from early disease detection and monitoring of dynamic phenomena noninvasively to accelerating drug discovery.Optical ProbesThis chapter is devoted to the properties and application of fluorescence dyes as probes for optical imaging. A variety of agents have been described to date, including nontargeting dyes, vascular agents, targeted conjugates, activatable dyes, and sensing probes. The major classes encompass polymethine dyes and xanthenes dyes, both of which are commercially available in broad variations. Addressing the purpose of optical animal imaging, the most relevant parameters to apply such probes are discussed, thereby supporting the reader in choosing reasonable imaging probes and in preparing bioconjugates for his studies

    Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

    Get PDF
    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error)

    Multi-Contrast Photoacoustic Computed Tomography

    Get PDF
    Imaging of small animals has played an indispensable role in preclinical research by providing high dimensional physiological, pathological, and phenotypic insights with clinical relevance. Yet pure optical imaging suffers from either shallow penetration (up to ~1–2 mm) or a poor depth-to-resolution ratio (~3), and non-optical techniques for whole-body imaging of small animals lack either spatiotemporal resolution or functional contrast. A stand-alone single-impulse photoacoustic computed tomography (PACT) system has been built, which successfully mitigates these limitations by integrating high spatiotemporal resolution, deep penetration, and full-view fidelity, as well as anatomical, dynamical, and functional contrasts. Based on hemoglobin absorption contrast, the whole-body dynamics and large scale brain functions of rodents have been imaged in real time. The absorption contrast between cytochrome and lipid has enabled PACT to resolve MRI-like whole brain structures. Taking advantage of the distinct absorption signature of melanin, unlabeled circulating melanoma cells have been tracked in real time in vivo. Assisted by near-infrared dyes, the perfusion processes have been visualized in rodents. By localizing single-dyed droplets, the spatial resolution of PACT has been improved by six-fold in vivo. The migration of metallic-based microrobots toward the targeted regions in the intestines has been monitored in real time. Genetically encoded photochromic proteins benefit PACT in detection sensitivity and specificity. The unique photoswitching characteristics of different photochromic proteins allow quantitative multi-contrast imaging at depths. A split version of the photochromic protein has permitted PA detection of protein-protein interactions in deep-seated tumors. The photochromic behaviors have also been utilized to guide photons to form an optical focus inside live tissue. As a rapidly evolving imaging technique, PACT promises pre-clinical applications and clinical translation.</p

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    BEst (Biomarker Estimation): Health Biomarker Estimation Non-invasively and Ubiquitously

    Get PDF
    This dissertation focuses on the non-invasive assessment of blood-hemoglobin levels. The primary goal of this research is to investigate a reliable, affordable, and user-friendly point-of-care solution for hemoglobin-level determination using fingertip videos captured by a smartphone. I evaluated videos obtained from five patient groups, three from the United States and two from Bangladesh, under two sets of lighting conditions. In the last group, based on human tissue optical transmission modeling data, I used near-infrared light-emitting diode sources of three wavelengths. I developed novel image processing techniques for fingertip video analysis to estimate hemoglobin levels. I studied video images creating image histogram and subdividing each image into multiple blocks. I determined the region of interest in a video and created photoplethysmogram signals. I created features from image histograms and PPG signals. I used the Partial Least Squares Regression and Support Vector Machine Regression tools to analyze input features and to build hemoglobin prediction models. Using data from the last and largest group of patients studied, I was able to develop a model with a strong linear correlation between estimated and clinically-measured hemoglobin levels. With further data and methodological refinements, the approach I have developed may be able to define a clinically accurate public health applicable tool for hemoglobin level and other blood constituent assessment

    A cumulative index to the 1976 issues of a continuing bibliography on Aerospace Medicine and Biology

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 151 through 162 of Aerospace Medicine and Biology: A continuing bibliography. It includes three indexes - subject, personal author, and corporate source
    • …
    corecore