160,230 research outputs found

    Sensitivity of Pagurus bernhardus (L.) to substrate-borne vibration and anthropogenic noise

    Get PDF
    © 2015 Elsevier B.V. Despite the prevalence of vibration produced by anthropogenic activities impacting the seabed there are few data and little information as to whether these are detected by crustaceans and whether they interfere with their behaviour. Here the sensitivity of unconditioned Pagurus bernhardus to substrate-borne vibration was quantified by exposure to sinusoidal vibrations of 5-410Hz of varied amplitudes using the staircase method of threshold determination, with threshold representing the detection of the response and two behavioural responses used as reception indicators: movement of the second antenna and onset or cessation of locomotion. Thresholds were compared to measured vibrations close to anthropogenic operations and to the time in captivity prior to tests. Behaviour varied according to the strength of the stimulus with a significant difference in average threshold values between the two behavioural indicators, although there was an overlap between the two, with overall sensitivity ranging from 0.09-0.44ms -2 (root mean squared, RMS). Crabs of shortest duration in captivity prior to tests had significantly greater sensitivity to vibration, down to 0.02ms -2 (RMS). The sensitivity of P. bernhardus fell well within the range of vibrations measured near anthropogenic operations. The data indicate that anthropogenic substrate-borne vibrations have a clear effect on the behaviour of a common marine crustacean. The study emphasises that these vibrations are an important component of noise pollution that requires further attention to understand the long term effects on marine crustaceans

    Contrast sensitivity of insect motion detectors to natural images

    Get PDF
    How do animals regulate self-movement despite large variation in the luminance contrast of the environment? Insects are capable of regulating flight speed based on the velocity of image motion, but the mechanisms for this are unclear. The Hassenstein–Reichardt correlator model and elaborations can accurately predict responses of motion detecting neurons under many conditions but fail to explain the apparent lack of spatial pattern and contrast dependence observed in freely flying bees and flies. To investigate this apparent discrepancy, we recorded intracellularly from horizontal-sensitive (HS) motion detecting neurons in the hoverfly while displaying moving images of natural environments. Contrary to results obtained with grating patterns, we show these neurons encode the velocity of natural images largely independently of the particular image used despite a threefold range of contrast. This invariance in response to natural images is observed in both strongly and minimally motion-adapted neurons but is sensitive to artificial manipulations in contrast. Current models of these cells account for some, but not all, of the observed insensitivity to image contrast. We conclude that fly visual processing may be matched to commonalities between natural scenes, enabling accurate estimates of velocity largely independent of the particular scene

    Fundamental Properties of Intensity, Form, and Motion Perception in the Visual Nervous Systems of Calliphora phaenicia and Musca domestica

    Get PDF
    Several classes of interneurons in the optic lobes and brain of the insects, Musca domestica and Calliphora phaenicia, have been studied in detail. Visual stimuli have been categorized on the basis of the properties of intensity, form, and motion. Response characteristics of the classes of neural units are described with respect to these three classes of visual stimuli. While those units that detect motion in select directions have a tonic response, form detection units have a phasic response only. Through correlation of the responses of these classes with visual stimuli, it is shown that these units integrate the responses of other units which have very small visual fields. The small-field units are presumed to integrate the output of a small group of adjacent retinula cells and to respond differentially to intensity, form, and motion. It is shown that the response of both form and motion detection units is independent of the direction of pattern intensity gradation. As a consequence of this independence, it is further shown that failure to detect motion properly must start at a spatial wavelength four times the effective sampling station spacing rather than twice as has been predicted previously

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Detection of satellite remnants in the Galactic Halo with Gaia III. Detection limits for Ultra Faint Dwarf Galaxies

    Get PDF
    We present a method to identify Ultra Faint Dwarf Galaxy (UFDG) candidates in the halo of the Milky Way using the future Gaia catalogue and we explore its detection limits and completeness. The method is based on the Wavelet Transform and searches for over-densities in the combined space of sky coordinates and proper motions, using kinematics in the search for the first time. We test the method with a Gaia mock catalogue that has the Gaia Universe Model Snapshot (GUMS) as a background, and use a library of around 30 000 UFDGs simulated as Plummer spheres with a single stellar population. For the UFDGs we use a wide range of structural and orbital parameters that go beyond the range spanned by real systems, where some UFDGs may remain undetected. We characterize the detection limits as function of the number of observable stars by Gaia in the UFDGs with respect to that of the background and their apparent sizes in the sky and proper motion planes. We find that the addition of proper motions in the search improves considerably the detections compared to a photometric survey at the same magnitude limit. Our experiments suggest that Gaia will be able to detect UFDGs that are similar to some of the known UFDGs even if the limit of Gaia is around 2 magnitudes brighter than that of SDSS, with the advantage of having a full-sky catalogue. We also see that Gaia could even find some UFDGs that have lower surface brightness than the SDSS limit.Comment: Accepted for publication in MNRA

    Low complexity object detection with background subtraction for intelligent remote monitoring

    Get PDF
    corecore