330 research outputs found

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Model Based Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352 - 3rd Report

    Get PDF
    We are conducting research in the area of teleoperation with feedback delay. Significant delays occur when performing space teleoperation from the earth as well as in subsea teleoperation where the operator is typically on a surface vessel and communication is via acoustic links. These delays make teleoperation extremely difficult and lead to very low operator productivity. We have combined computer graphics with manipulator programming to provide a solution to the delay problem. A teleoperator master arm is interfaced to a graphical simulation of the remote environment. Synthetic fixtures are used to guide the operators motions and to provide kinesthetic feedback. The operator\u27s actions are monitored and used to generate symbolic motion commands for transmission to, and execution by, the remote slave robot. While much of a task proceeds error free, when an error does occur, the slave system transmits data back to the master environment where the operator can then experience the motion of the slave manipulator in actual task execution. We have also provided for the use of tools such as an impact wrench and a winch at the slave site. In all cases the tools are unencumbered by sensors; the slave uses a compliant instrumented wrist to monitor tool operation in terms of resulting motions and reaction forces

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    The emergence of active perception - seeking conceptual foundations

    Get PDF
    The aim of this thesis is to explain the emergence of active perception. It takes an interdisciplinary approach, by providing the necessary conceptual foundations for active perception research - the key notions that bridge the conceptual gaps remaining in understanding emergent behaviours of active perception in the context of robotic implementations. On the one hand, the autonomous agent approach to mobile robotics claims that perception is active. On the other hand, while explanations of emergence have been extensively pursued in Artificial Life, these explanations have not yet successfully accounted for active perception.The main question dealt with in this thesis is how active perception systems, as behaviour -based autonomous systems, are capable of providing relatively optimal perceptual guidance in response to environmental challenges, which are somewhat unpredictable. The answer is: task -level emergence on grounds of complicatedly combined computational strategies, but this notion needs further explanation.To study the computational strategies undertaken in active perception re- search, the thesis surveys twelve implementations. On the basis of the surveyed implementations, discussions in this thesis show that the perceptual task executed in support of bodily actions does not arise from the intentionality of a homuncu- lus, but is identified automatically on the basis of the dynamic small mod- ules of particular robotic architectures. The identified tasks are accomplished by quasi -functional modules and quasi- action modules, which maintain transformations of perceptual inputs, compute critical variables, and provide guidance of sensory -motor movements to the most relevant positions for fetching further needed information. Given the nature of these modules, active perception emerges in a different fashion from the global behaviour seen in other autonomous agent research.The quasi- functional modules and quasi- action modules cooperate by estimating the internal cohesion of various sources of information in support of the envisaged task. Specifically, such modules basically reflect various computational facilities for a species to single out the most important characteristics of its ecological niche. These facilities help to achieve internal cohesion, by maintaining a stepwise evaluation over the previously computed information, the required task, and the most relevant features presented in the environment.Apart from the above exposition of active perception, the process of task - level emergence is understood with certain principles extracted from four models of life origin. First, the fundamental structure of active perception is identified as the stepwise computation. Second, stepwise computation is promoted from baseline to elaborate patterns, i.e. from a simple system to a combinatory system. Third, a core requirement for all stepwise computational processes is the comparison between collected and needed information in order to insure the contribution to the required task. Interestingly, this point indicates that active perception has an inherent pragmatist dimension.The understanding of emergence in the present thesis goes beyond the distinc- tion between external processes and internal representations, which some current philosophers argue is required to explain emergence. The additional factors are links of various knowledge sources, in which the role of conceptual foundations is two -fold. On the one hand, those conceptual foundations elucidate how various knowledge sources can be linked. On the other, they make possible an interdisci- plinary view of emergence. Given this two -fold role, this thesis shows the unity of task -level emergence. Thus, the thesis demonstrates a cooperation between sci- ence and philosophy for the purpose of understanding the integrity of emergent cognitive phenomena

    Proceedings of the NASA Conference on Space Telerobotics, volume 5

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center

    Minimum Time Motion of a Robotic Manipulator.

    Get PDF
    This dissertation treats the modeling, analysis, and trajectory control of a robotic manipulator to execute specified point-to-point tasks. The relative coordinate representation of kinematic and dynamic variables is defined using vectors and matrices based on coordinate transformations. A kinematic modeling of a manipulator is performed using Denavit-Hartenberg link parameters. For given end-effector information (location and orientation), a stable and efficient iterative numerical algorithm for a joint solution is developed. A modified general Gauss elimination and a direct minimum search are combined with other refinements to yield fast convergency and stable results. This algorithm can be used as a routine solution for various simple structured manipulators and for general structured manipulators for point-to-point and trajectory following. Two major formulations of robot dynamic modeling, the recursive Newton-Euler and the Largrange-Euler are reviewed utilizing the results of the kinematic analysis. The motion effects of dynamic terms and their relative significance on the nominal joint torque are determined in conjunction with the minimum time motion strategy. The relative significance of dynamic terms is analyzed for a given joint space trajectory. The motion effect of dynamic terms is analyzed by comparing the minimum time motion to the conventional optimum straight line trajectory in joint configuration space. A motion trend for a manipulator under minimum time execution is inferred from the simulation results. An efficient general solution algorithm for generating the minimum time trajectory for a point-to-point task subject to the actuator torque constraints is developed. A series of parametric cubic spline segments is used to represent the continuous joint trajectory. A formulation of an n segmented cubic spline satisfying second derivative continuity at knot points is derived. A Runge-Kutta 4th order, two starting point, forward and backward numerical integration and a non-derivative multi-variable minimum search are performed with a penalty function imposing the constraints on search parameters and kinematic motion parameters. Information for manipulator structure and controller design and trajectory planning for a notable increase in dynamic performance are obtained using the algorithms developed

    Computer vision

    Get PDF
    The field of computer vision is surveyed and assessed, key research issues are identified, and possibilities for a future vision system are discussed. The problems of descriptions of two and three dimensional worlds are discussed. The representation of such features as texture, edges, curves, and corners are detailed. Recognition methods are described in which cross correlation coefficients are maximized or numerical values for a set of features are measured. Object tracking is discussed in terms of the robust matching algorithms that must be devised. Stereo vision, camera control and calibration, and the hardware and systems architecture are discussed

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development
    • …
    corecore