433 research outputs found

    Disparity-compensated view synthesis for s3D content correction

    Get PDF
    International audienceThe production of stereoscopic 3D HD content is considerably increasing and experience in 2-view acquisition is in progress. High quality material to the audience is required but not always ensured, and correction of the stereo views may be required. This is done via disparity-compensated view synthesis. A robust method has been developed dealing with these acquisition problems that introduce discomfort (e.g hyperdivergence and hyperconvergence...) as well as those ones that may disrupt the correction itself (vertical disparity, color difference between views...). The method has three phases: a preprocessing in order to correct the stereo images and estimate features (e.g. disparity range...) over the sequence. The second (main) phase proceeds then to disparity estimation and view synthesis. Dual disparity estimation based on robust block-matching, discontinuity-preserving filtering, consistency and occlusion handling has been developed. Accurate view synthesis is carried out through disparity compensation. Disparity assessment has been introduced in order to detect and quantify errors. A post-processing deals with these errors as a fallback mode. The paper focuses on disparity estimation and view synthesis of HD images. Quality assessment of synthesized views on a large set of HD video data has proved the effectiveness of our method

    Discontinuity-Aware Base-Mesh Modeling of Depth for Scalable Multiview Image Synthesis and Compression

    Full text link
    This thesis is concerned with the challenge of deriving disparity from sparsely communicated depth for performing disparity-compensated view synthesis for compression and rendering of multiview images. The modeling of depth is essential for deducing disparity at view locations where depth is not available and is also critical for visibility reasoning and occlusion handling. This thesis first explores disparity derivation methods and disparity-compensated view synthesis approaches. Investigations reveal the merits of adopting a piece-wise continuous mesh description of depth for deriving disparity at target view locations to enable disparity-compensated backward warping of texture. Visibility information can be reasoned due to the correspondence relationship between views that a mesh model provides, while the connectivity of a mesh model assists in resolving depth occlusion. The recent JPEG 2000 Part-17 extension defines tools for scalable coding of discontinuous media using breakpoint-dependent DWT, where breakpoints describe discontinuity boundary geometry. This thesis proposes a method to efficiently reconstruct depth coded using JPEG 2000 Part-17 as a piece-wise continuous mesh, where discontinuities are driven by the encoded breakpoints. Results show that the proposed mesh can accurately represent decoded depth while its complexity scales along with decoded depth quality. The piece-wise continuous mesh model anchored at a single viewpoint or base-view can be augmented to form a multi-layered structure where the underlying layers carry depth information of regions that are occluded at the base-view. Such a consolidated mesh representation is termed a base-mesh model and can be projected to many viewpoints, to deduce complete disparity fields between any pair of views that are inherently consistent. Experimental results demonstrate the superior performance of the base-mesh model in multiview synthesis and compression compared to other state-of-the-art methods, including the JPEG Pleno light field codec. The proposed base-mesh model departs greatly from conventional pixel-wise or block-wise depth models and their forward depth mapping for deriving disparity ingrained in existing multiview processing systems. When performing disparity-compensated view synthesis, there can be regions for which reference texture is unavailable, and inpainting is required. A new depth-guided texture inpainting algorithm is proposed to restore occluded texture in regions where depth information is either available or can be inferred using the base-mesh model

    Visual motion : algorithms for analysis and application

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1990.Includes bibliographical references (leaves 71-73).by Michael Adam Sokolov.M.S

    EV-IMO: Motion Segmentation Dataset and Learning Pipeline for Event Cameras

    Full text link
    We present the first event-based learning approach for motion segmentation in indoor scenes and the first event-based dataset - EV-IMO - which includes accurate pixel-wise motion masks, egomotion and ground truth depth. Our approach is based on an efficient implementation of the SfM learning pipeline using a low parameter neural network architecture on event data. In addition to camera egomotion and a dense depth map, the network estimates pixel-wise independently moving object segmentation and computes per-object 3D translational velocities for moving objects. We also train a shallow network with just 40k parameters, which is able to compute depth and egomotion. Our EV-IMO dataset features 32 minutes of indoor recording with up to 3 fast moving objects simultaneously in the camera field of view. The objects and the camera are tracked by the VICON motion capture system. By 3D scanning the room and the objects, accurate depth map ground truth and pixel-wise object masks are obtained, which are reliable even in poor lighting conditions and during fast motion. We then train and evaluate our learning pipeline on EV-IMO and demonstrate that our approach far surpasses its rivals and is well suited for scene constrained robotics applications.Comment: 8 pages, 6 figures. Submitted to 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019

    3D coding tools final report

    Get PDF
    Livrable D4.3 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D4.3 du projet. Son titre : 3D coding tools final repor

    Perceptual Real-Time 2D-to-3D Conversion Using Cue Fusion

    Get PDF
    We propose a system to infer binocular disparity from a monocular video stream in real-time. Different from classic reconstruction of physical depth in computer vision, we compute perceptually plausible disparity, that is numerically inaccurate, but results in a very similar overall depth impression with plausible overall layout, sharp edges, fine details and agreement between luminance and disparity. We use several simple monocular cues to estimate disparity maps and confidence maps of low spatial and temporal resolution in real-time. These are complemented by spatially-varying, appearance-dependent and class-specific disparity prior maps, learned from example stereo images. Scene classification selects this prior at runtime. Fusion of prior and cues is done by means of robust MAP inference on a dense spatio-temporal conditional random field with high spatial and temporal resolution. Using normal distributions allows this in constant-time, parallel per-pixel work. We compare our approach to previous 2D-to-3D conversion systems in terms of different metrics, as well as a user study and validate our notion of perceptually plausible disparity

    Human robot interaction in a crowded environment

    No full text
    Human Robot Interaction (HRI) is the primary means of establishing natural and affective communication between humans and robots. HRI enables robots to act in a way similar to humans in order to assist in activities that are considered to be laborious, unsafe, or repetitive. Vision based human robot interaction is a major component of HRI, with which visual information is used to interpret how human interaction takes place. Common tasks of HRI include finding pre-trained static or dynamic gestures in an image, which involves localising different key parts of the human body such as the face and hands. This information is subsequently used to extract different gestures. After the initial detection process, the robot is required to comprehend the underlying meaning of these gestures [3]. Thus far, most gesture recognition systems can only detect gestures and identify a person in relatively static environments. This is not realistic for practical applications as difficulties may arise from people‟s movements and changing illumination conditions. Another issue to consider is that of identifying the commanding person in a crowded scene, which is important for interpreting the navigation commands. To this end, it is necessary to associate the gesture to the correct person and automatic reasoning is required to extract the most probable location of the person who has initiated the gesture. In this thesis, we have proposed a practical framework for addressing the above issues. It attempts to achieve a coarse level understanding about a given environment before engaging in active communication. This includes recognizing human robot interaction, where a person has the intention to communicate with the robot. In this regard, it is necessary to differentiate if people present are engaged with each other or their surrounding environment. The basic task is to detect and reason about the environmental context and different interactions so as to respond accordingly. For example, if individuals are engaged in conversation, the robot should realize it is best not to disturb or, if an individual is receptive to the robot‟s interaction, it may approach the person. Finally, if the user is moving in the environment, it can analyse further to understand if any help can be offered in assisting this user. The method proposed in this thesis combines multiple visual cues in a Bayesian framework to identify people in a scene and determine potential intentions. For improving system performance, contextual feedback is used, which allows the Bayesian network to evolve and adjust itself according to the surrounding environment. The results achieved demonstrate the effectiveness of the technique in dealing with human-robot interaction in a relatively crowded environment [7]

    Visibility computation through image generalization

    Get PDF
    This dissertation introduces the image generalization paradigm for computing visibility. The paradigm is based on the observation that an image is a powerful tool for computing visibility. An image can be rendered efficiently with the support of graphics hardware and each of the millions of pixels in the image reports a visible geometric primitive. However, the visibility solution computed by a conventional image is far from complete. A conventional image has a uniform sampling rate which can miss visible geometric primitives with a small screen footprint. A conventional image can only find geometric primitives to which there is direct line of sight from the center of projection (i.e. the eye) of the image; therefore, a conventional image cannot compute the set of geometric primitives that become visible as the viewpoint translates, or as time changes in a dynamic dataset. Finally, like any sample-based representation, a conventional image can only confirm that a geometric primitive is visible, but it cannot confirm that a geometric primitive is hidden, as that would require an infinite number of samples to confirm that the primitive is hidden at all of its points. ^ The image generalization paradigm overcomes the visibility computation limitations of conventional images. The paradigm has three elements. (1) Sampling pattern generalization entails adding sampling locations to the image plane where needed to find visible geometric primitives with a small footprint. (2) Visibility sample generalization entails replacing the conventional scalar visibility sample with a higher dimensional sample that records all geometric primitives visible at a sampling location as the viewpoint translates or as time changes in a dynamic dataset; the higher-dimensional visibility sample is computed exactly, by solving visibility event equations, and not through sampling. Another form of visibility sample generalization is to enhance a sample with its trajectory as the geometric primitive it samples moves in a dynamic dataset. (3) Ray geometry generalization redefines a camera ray as the set of 3D points that project at a given image location; this generalization supports rays that are not straight lines, and enables designing cameras with non-linear rays that circumvent occluders to gather samples not visible from a reference viewpoint. ^ The image generalization paradigm has been used to develop visibility algorithms for a variety of datasets, of visibility parameter domains, and of performance-accuracy tradeoff requirements. These include an aggressive from-point visibility algorithm that guarantees finding all geometric primitives with a visible fragment, no matter how small primitive\u27s image footprint, an efficient and robust exact from-point visibility algorithm that iterates between a sample-based and a continuous visibility analysis of the image plane to quickly converge to the exact solution, a from-rectangle visibility algorithm that uses 2D visibility samples to compute a visible set that is exact under viewpoint translation, a flexible pinhole camera that enables local modulations of the sampling rate over the image plane according to an input importance map, an animated depth image that not only stores color and depth per pixel but also a compact representation of pixel sample trajectories, and a curved ray camera that integrates seamlessly multiple viewpoints into a multiperspective image without the viewpoint transition distortion artifacts of prior art methods

    Multiple View Geometry For Video Analysis And Post-production

    Get PDF
    Multiple view geometry is the foundation of an important class of computer vision techniques for simultaneous recovery of camera motion and scene structure from a set of images. There are numerous important applications in this area. Examples include video post-production, scene reconstruction, registration, surveillance, tracking, and segmentation. In video post-production, which is the topic being addressed in this dissertation, computer analysis of the motion of the camera can replace the currently used manual methods for correctly aligning an artificially inserted object in a scene. However, existing single view methods typically require multiple vanishing points, and therefore would fail when only one vanishing point is available. In addition, current multiple view techniques, making use of either epipolar geometry or trifocal tensor, do not exploit fully the properties of constant or known camera motion. Finally, there does not exist a general solution to the problem of synchronization of N video sequences of distinct general scenes captured by cameras undergoing similar ego-motions, which is the necessary step for video post-production among different input videos. This dissertation proposes several advancements that overcome these limitations. These advancements are used to develop an efficient framework for video analysis and post-production in multiple cameras. In the first part of the dissertation, the novel inter-image constraints are introduced that are particularly useful for scenes where minimal information is available. This result extends the current state-of-the-art in single view geometry techniques to situations where only one vanishing point is available. The property of constant or known camera motion is also described in this dissertation for applications such as calibration of a network of cameras in video surveillance systems, and Euclidean reconstruction from turn-table image sequences in the presence of zoom and focus. We then propose a new framework for the estimation and alignment of camera motions, including both simple (panning, tracking and zooming) and complex (e.g. hand-held) camera motions. Accuracy of these results is demonstrated by applying our approach to video post-production applications such as video cut-and-paste and shadow synthesis. As realistic image-based rendering problems, these applications require extreme accuracy in the estimation of camera geometry, the position and the orientation of the light source, and the photometric properties of the resulting cast shadows. In each case, the theoretical results are fully supported and illustrated by both numerical simulations and thorough experimentation on real data
    • …
    corecore