150 research outputs found

    Increasing Signal to Noise Ratio and Minimising Artefacts in Biomedical Instrumentation Systems

    Get PDF
    The research work described in this thesis was concerned with finding a novel method of minimising motion artefacts in biomedical instrumentation systems. The proposed solution, an Analog Frontend (AFE), was designed to detect any vertical (Y-Plane) or horizontal (X-Plane) movement of the electrode using two strain gauges, which were separated by 90° and fitted onto the electrode. The detected motion was fed back to the system for the removal of any motion artefact. The research started by emphasising the importance of minimising motion artefacts from biomedical signals and explaining how important it is for a clinical misinterpretation of the results. Hence, various motion artefact minimisation techniques undertaken by other researchers in the field were reviewed. This study covered different sources of artefacts, including the 40kHz powerline interference (PLI), 50/60kHz common-mode noise, white noise, and motion artefacts. The system was fully developed and tested and was firstly simulated using MATLAB Simulink tools to prove the effectiveness of the system before starting the implementation and build phase in the lab. The AFE system successfully produced a clean output signal, achieving an average correlation coefficient of 0.995. Also, the system output had a 98% SNR similarity with the clean source signal. Further, the system was then built and tested in the lab and successfully minimised the motion artefacts, achieving an average correlation coefficient of 0.974. Additionally, the final output had a 97.8% SNR similarity with the clean source signal. A novel test rig was developed to test the system with strain gauges. The system was able to remove the detected signal from the test rig and had an average correlation coefficient of 0.957. Lastly, the final output had a 94.2% SNR similarity with the clean source signal

    Reduction of mobile phone interference in tele-ECG monitoring.

    Get PDF
    by Hung King Fai Kevin.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves 82-85 (2nd gp.)).Abstracts in English and Chinese.ACKNOWLEDGEMENT --- p.iiABSTRACT --- p.iii摘要 --- p.vTABLE OF CONTENTS --- p.viChapter CHAPTER 1 --- INTRODUCTION --- p.1Chapter 1.1 --- OBJECTIVES --- p.1Chapter 1.2 --- NEED FOR PATIENT-MONITORING SYSTEM --- p.1Chapter 1.2.1 --- Aging Population --- p.1Chapter 1.2.2 --- Increasing Population with Heart Diseases --- p.2Chapter 1.3 --- ECG BASICS --- p.3Chapter 1.4 --- EXISITING ECG-MONITORING TECHNOLOGIES --- p.4Chapter 1.5 --- CHALLENGES IN PATIENT-MONITORING --- p.5Chapter 1.6 --- DEVELOPMENT OF AN ECG-MONITORING SYSTEM --- p.6Chapter 1.6.1 --- Overall Structure --- p.6Chapter 1.6.2 --- Considerations --- p.7Chapter CHAPTER 2 --- EMI FILTERS IN ECG ACQUISITION CIRCUIT --- p.8Chapter 2.1 --- OVERVIEW OF NOISE SOURCES IN ECG ACQUISITION --- p.8Chapter 2.1.1 --- Other Biopotentials --- p.8Chapter 2.1.2 --- Motion Artifact --- p.8Chapter 2.1.3 --- Power-line Interference --- p.10Chapter 2.1.4 --- High-Frequency Electromagnetic Interference --- p.15Chapter 2.2 --- EMI FILTERS --- p.16Chapter 2.2.1 --- Introduction to EMI Filters --- p.16Chapter 2.2.2 --- Types of EMI Filter --- p.17Chapter 2.2.3 --- EMI Filters in ECG Monitoring --- p.21Chapter 2.3 --- MODELING OF INTERFERENCE IN ECG-MONITORING SYSTEM --- p.22Chapter 2.3.1 --- Model and Parameters --- p.22Chapter 2.3.2 --- Method --- p.24Chapter 2.3.2 --- Results --- p.27Chapter 2.3.3 --- Discussion --- p.30Chapter 2.4 --- BUILDING AN ECG ACQUISITION CIRCUIT WITH EMI FILTERS --- p.30Chapter 2.4.1 --- Purpose --- p.30Chapter 2.4.2 --- Experimental Setup and Method --- p.30Chapter 2.4.3 --- Results --- p.32Chapter 2.4.4 --- Discussion --- p.46Chapter CHAPTER 3 --- ADAPTIVE FILTER --- p.48Chapter 3.1 --- OBJECTIVE --- p.48Chapter 3.2 --- INTRODUCTION TO ADAPTIVE FILTER --- p.48Chapter 3.3 --- METHOD --- p.50Chapter 3.4 --- RESULTS --- p.52Chapter 3.5 --- DISCUSSION --- p.57Chapter CHAPTER 4 --- WAP-BASED TELEMEDICINE APPLICATIONS --- p.59Chapter 4.1 --- INTRODUCTION TO TELEMEDICINE --- p.59Chapter 4.2 --- INTRODUCTION TO WAP --- p.59Chapter 4.3 --- WAP APPLICATIONS --- p.60Chapter 4.4 --- SYSTEM IMPLEMENTATION --- p.63Chapter 4.4.1 --- Overall Structure --- p.63Chapter 4.4.2 --- Relational Database --- p.63Chapter 4.4.3 --- Program Flow --- p.64Chapter 4.4.4 --- ECG Browsing and Feature Extraction --- p.70Chapter 4.5 --- EMULATION --- p.72Chapter 4.6 --- EXPERIENCE WITH WAP PHONE --- p.74Chapter 4.7 --- DISCUSSION AND CONCLUSION --- p.75Chapter CHAPTER 5: --- CONCLUSION AND FUTURE WORK --- p.77Chapter 5.1 --- CONCLUSION --- p.77Chapter 5.2 --- FUTURE WORK --- p.77Chapter 5.3 --- MARKET ANALYSIS --- p.79BIBLIOGRAPHY --- p.8

    Low Power Circuits for Smart Flexible ECG Sensors

    Get PDF
    Cardiovascular diseases (CVDs) are the world leading cause of death. In-home heart condition monitoring effectively reduced the CVD patient hospitalization rate. Flexible electrocardiogram (ECG) sensor provides an affordable, convenient and comfortable in-home monitoring solution. The three critical building blocks of the ECG sensor i.e., analog frontend (AFE), QRS detector, and cardiac arrhythmia classifier (CAC), are studied in this research. A fully differential difference amplifier (FDDA) based AFE that employs DC-coupled input stage increases the input impedance and improves CMRR. A parasitic capacitor reuse technique is proposed to improve the noise/area efficiency and CMRR. An on-body DC bias scheme is introduced to deal with the input DC offset. Implemented in 0.35m CMOS process with an area of 0.405mm2, the proposed AFE consumes 0.9W at 1.8V and shows excellent noise effective factor of 2.55, and CMRR of 76dB. Experiment shows the proposed AFE not only picks up clean ECG signal with electrodes placed as close as 2cm under both resting and walking conditions, but also obtains the distinct -wave after eye blink from EEG recording. A personalized QRS detection algorithm is proposed to achieve an average positive prediction rate of 99.39% and sensitivity rate of 99.21%. The user-specific template avoids the complicate models and parameters used in existing algorithms while covers most situations for practical applications. The detection is based on the comparison of the correlation coefficient of the user-specific template with the ECG segment under detection. The proposed one-target clustering reduced the required loops. A continuous-in-time discrete-in-amplitude (CTDA) artificial neural network (ANN) based CAC is proposed for the smart ECG sensor. The proposed CAC achieves over 98% classification accuracy for 4 types of beats defined by AAMI (Association for the Advancement of Medical Instrumentation). The CTDA scheme significantly reduces the input sample numbers and simplifies the sample representation to one bit. Thus, the number of arithmetic operations and the ANN structure are greatly simplified. The proposed CAC is verified by FPGA and implemented in 0.18m CMOS process. Simulation results show it can operate at clock frequencies from 10KHz to 50MHz. Average power for the patient with 75bpm heart rate is 13.34W

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods

    Characterization and processing of novel neck photoplethysmography signals for cardiorespiratory monitoring

    Get PDF
    Epilepsy is a neurological disorder causing serious brain seizures that severely affect the patients' quality of life. Sudden unexpected death in epilepsy (SUDEP), for which no evident decease reason is found after post-mortem examination, is a common cause of mortality. The mechanisms leading to SUDEP are uncertain, but, centrally mediated apneic respiratory dysfunction, inducing dangerous hypoxemia, plays a key role. Continuous physiological monitoring appears as the only reliable solution for SUDEP prevention. However, current seizure-detection systems do not show enough sensitivity and present a high number of intolerable false alarms. A wearable system capable of measuring several physiological signals from the same body location, could efficiently overcome these limitations. In this framework, a neck wearable apnea detection device (WADD), sensing airflow through tracheal sounds, was designed. Despite the promising performance, it is still necessary to integrate an oximeter sensor into the system, to measure oxygen saturation in blood (SpO2) from neck photoplethysmography (PPG) signals, and hence, support the apnea detection decision. The neck is a novel PPG measurement site that has not yet been thoroughly explored, due to numerous challenges. This research work aims to characterize neck PPG signals, in order to fully exploit this alternative pulse oximetry location, for precise cardiorespiratory biomarkers monitoring. In this thesis, neck PPG signals were recorded, for the first time in literature, in a series of experiments under different artifacts and respiratory conditions. Morphological and spectral characteristics were analyzed in order to identify potential singularities of the signals. The most common neck PPG artifacts critically corrupting the signal quality, and other breathing states of interest, were thoroughly characterized in terms of the most discriminative features. An algorithm was further developed to differentiate artifacts from clean PPG signals. Both, the proposed characterization and classification model can be useful tools for researchers to denoise neck PPG signals and exploit them in a variety of clinical contexts. In addition to that, it was demonstrated that the neck also offered the possibility, unlike other body parts, to extract the Jugular Venous Pulse (JVP) non-invasively. Overall, the thesis showed how the neck could be an optimum location for multi-modal monitoring in the context of diseases affecting respiration, since it not only allows the sensing of airflow related signals, but also, the breathing frequency component of the PPG appeared more prominent than in the standard finger location. In this context, this property enabled the extraction of relevant features to develop a promising algorithm for apnea detection in near-real time. These findings could be of great importance for SUDEP prevention, facilitating the investigation of the mechanisms and risk factors associated to it, and ultimately reduce epilepsy mortality.Open Acces

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    VLSI Circuits for Bidirectional Neural Interfaces

    Get PDF
    Medical devices that deliver electrical stimulation to neural tissue are important clinical tools that can augment or replace pharmacological therapies. The success of such devices has led to an explosion of interest in the field, termed neuromodulation, with a diverse set of disorders being targeted for device-based treatment. Nevertheless, a large degree of uncertainty surrounds how and why these devices are effective. This uncertainty limits the ability to optimize therapy and gives rise to deleterious side effects. An emerging approach to improve neuromodulation efficacy and to better understand its mechanisms is to record bioelectric activity during stimulation. Understanding how stimulation affects electrophysiology can provide insights into disease, and also provides a feedback signal to autonomously tune stimulation parameters to improve efficacy or decrease side-effects. The aims of this work were taken up to advance the state-of-the-art in neuro-interface technology to enable closed-loop neuromodulation therapies. Long term monitoring of neuronal activity in awake and behaving subjects can provide critical insights into brain dynamics that can inform system-level design of closed-loop neuromodulation systems. Thus, first we designed a system that wirelessly telemetered electrocorticography signals from awake-behaving rats. We hypothesized that such a system could be useful for detecting sporadic but clinically relevant electrophysiological events. In an 18-hour, overnight recording, seizure activity was detected in a pre-clinical rodent model of global ischemic brain injury. We subsequently turned to the design of neurostimulation circuits. Three critical features of neurostimulation devices are safety, programmability, and specificity. We conceived and implemented a neurostimulator architecture that utilizes a compact on-chip circuit for charge balancing (safety), digital-to-analog converter calibration (programmability) and current steering (specificity). Charge balancing accuracy was measured at better than 0.3%, the digital-to-analog converters achieved 8-bit resolution, and physiological effects of current steering stimulation were demonstrated in an anesthetized rat. Lastly, to implement a bidirectional neural interface, both the recording and stimulation circuits were fabricated on a single chip. In doing so, we implemented a low noise, ultra-low power recording front end with a high dynamic range. The recording circuits achieved a signal-to-noise ratio of 58 dB and a spurious-free dynamic range of better than 70 dB, while consuming 5.5 μW per channel. We demonstrated bidirectional operation of the chip by recording cardiac modulation induced through vagus nerve stimulation, and demonstrated closed-loop control of cardiac rhythm
    corecore