346 research outputs found

    A Novel Adaptive Spectrum Noise Cancellation Approach for Enhancing Heartbeat Rate Monitoring in a Wearable Device

    Get PDF
    This paper presents a novel approach, Adaptive Spectrum Noise Cancellation (ASNC), for motion artifacts removal in Photoplethysmography (PPG) signals measured by an optical biosensor to obtain clean PPG waveforms for heartbeat rate calculation. One challenge faced by this optical sensing method is the inevitable noise induced by movement when the user is in motion, especially when the motion frequency is very close to the target heartbeat rate. The proposed ASNC utilizes the onboard accelerometer and gyroscope sensors to detect and remove the artifacts adaptively, thus obtaining accurate heartbeat rate measurement while in motion. The ASNC algorithm makes use of a commonly accepted spectrum analysis approaches in medical digital signal processing, discrete cosine transform, to carry out frequency domain analysis. Results obtained by the proposed ASNC have been compared to the classic algorithms, the adaptive threshold peak detection and adaptive noise cancellation. The mean (standard deviation) absolute error and mean relative error of heartbeat rate calculated by ASNC is 0.33 (0.57) beats·min-1 and 0.65%, by adaptive threshold peak detection algorithm is 2.29 (2.21) beats·min-1 and 8.38%, by adaptive noise cancellation algorithm is 1.70 (1.50) beats·min-1 and 2.02%. While all algorithms performed well with both simulated PPG data and clean PPG data collected from our Verity device in situations free of motion artifacts, ASNC provided better accuracy when motion artifacts increase, especially when motion frequency is very close to the heartbeat rate

    Learned Kernels for Interpretable and Efficient PPG Signal Quality Assessment and Artifact Segmentation

    Full text link
    Photoplethysmography (PPG) provides a low-cost, non-invasive method to continuously monitor various cardiovascular parameters. PPG signals are generated by wearable devices and frequently contain large artifacts caused by external factors, such as motion of the human subject. In order to ensure robust and accurate extraction of physiological parameters, corrupted areas of the signal need to be identified and handled appropriately. Previous methodology relied either on handcrafted feature detectors or signal metrics which yield sub-optimal performance, or relied on machine learning techniques such as deep neural networks (DNN) which lack interpretability and are computationally and memory intensive. In this work, we present a novel method to learn a small set of interpretable convolutional kernels that has performance similar to -- and often better than -- the state-of-the-art DNN approach with several orders of magnitude fewer parameters. This work allows for efficient, robust, and interpretable signal quality assessment and artifact segmentation on low-power devices.Comment: 16 pages, 6 figure

    Characterization and processing of novel neck photoplethysmography signals for cardiorespiratory monitoring

    Get PDF
    Epilepsy is a neurological disorder causing serious brain seizures that severely affect the patients' quality of life. Sudden unexpected death in epilepsy (SUDEP), for which no evident decease reason is found after post-mortem examination, is a common cause of mortality. The mechanisms leading to SUDEP are uncertain, but, centrally mediated apneic respiratory dysfunction, inducing dangerous hypoxemia, plays a key role. Continuous physiological monitoring appears as the only reliable solution for SUDEP prevention. However, current seizure-detection systems do not show enough sensitivity and present a high number of intolerable false alarms. A wearable system capable of measuring several physiological signals from the same body location, could efficiently overcome these limitations. In this framework, a neck wearable apnea detection device (WADD), sensing airflow through tracheal sounds, was designed. Despite the promising performance, it is still necessary to integrate an oximeter sensor into the system, to measure oxygen saturation in blood (SpO2) from neck photoplethysmography (PPG) signals, and hence, support the apnea detection decision. The neck is a novel PPG measurement site that has not yet been thoroughly explored, due to numerous challenges. This research work aims to characterize neck PPG signals, in order to fully exploit this alternative pulse oximetry location, for precise cardiorespiratory biomarkers monitoring. In this thesis, neck PPG signals were recorded, for the first time in literature, in a series of experiments under different artifacts and respiratory conditions. Morphological and spectral characteristics were analyzed in order to identify potential singularities of the signals. The most common neck PPG artifacts critically corrupting the signal quality, and other breathing states of interest, were thoroughly characterized in terms of the most discriminative features. An algorithm was further developed to differentiate artifacts from clean PPG signals. Both, the proposed characterization and classification model can be useful tools for researchers to denoise neck PPG signals and exploit them in a variety of clinical contexts. In addition to that, it was demonstrated that the neck also offered the possibility, unlike other body parts, to extract the Jugular Venous Pulse (JVP) non-invasively. Overall, the thesis showed how the neck could be an optimum location for multi-modal monitoring in the context of diseases affecting respiration, since it not only allows the sensing of airflow related signals, but also, the breathing frequency component of the PPG appeared more prominent than in the standard finger location. In this context, this property enabled the extraction of relevant features to develop a promising algorithm for apnea detection in near-real time. These findings could be of great importance for SUDEP prevention, facilitating the investigation of the mechanisms and risk factors associated to it, and ultimately reduce epilepsy mortality.Open Acces

    A Novel Respiratory Rate Estimation Algorithm from Photoplethysmogram Using Deep Learning Model

    Get PDF
    Respiratory rate (RR) is a critical vital sign that can provide valuable insights into various medical conditions, including pneumonia. Unfortunately, manual RR counting is often unreliable and discontinuous. Current RR estimation algorithms either lack the necessary accuracy or demand extensive window sizes. In response to these challenges, this study introduces a novel method for continuously estimating RR from photoplethysmogram (PPG) with a reduced window size and lower processing requirements. To evaluate and compare classical and deep learning algorithms, this study leverages the BIDMC and CapnoBase datasets, employing the Respiratory Rate Estimation (RRest) toolbox. The optimal classical techniques combination on the BIDMC datasets achieves a mean absolute error (MAE) of 1.9 breaths/min. Additionally, the developed neural network model utilises convolutional and long short-term memory layers to estimate RR effectively. The best-performing model, with a 50% train–test split and a window size of 7 s, achieves an MAE of 2 breaths/min. Furthermore, compared to other deep learning algorithms with window sizes of 16, 32, and 64 s, this study’s model demonstrates superior performance with a smaller window size. The study suggests that further research into more precise signal processing techniques may enhance RR estimation from PPG signals

    Motion artifact reduction in PPG signals

    Get PDF
    The aim of this thesis was to investigate methods for artifact removal in PPG signals and to implement and evaluate a few existing algorithms claiming that the amplitude information is recovered when removing motion artifacts from photoplethysmographic signals (PPG) captured from pulse oximeters. We developed a new proposed method that uses a two-stage based approach with singular value decomposition and fixed fast ICA algorithm in order to generate a PPG-correlated reference signal that is used in adaptive noise cancellation. The results were promising and our proposed method is easy to implement and converges quickly with good extraction performance. It has a few design parameters and only needs the estimated period of the PPG signal. Our method could be used in a clinical routine for prediction of intradialytic hypotension. However it should be mentioned that although our method has great potential the simulations were only conducted on two healthy males. Further studies on a larger dataset might be needed in order to establish a full value of the efficacy of our method.Felaktiga mätresultat vid användning av pulsoximeter under patientövervakning En felaktig diagnos är ju inget kul att få av sin läkare. I sjukhusmiljö samt kliniska omgivningar eller under akuttransport kan pulsoximetern, som bland annat mäter syremättnaden i blodet via fingret, ge felaktiga mätresultat på grund av frivilliga eller ofrivilliga rörelser hos patienten. Under de senaste åren har biomedicinsk teknologi ökat drastiskt för mer effektiva behandlingar samt tillförlitliga diagnoser. För att få kliniskt korrekta mätningar från medicinsk utrustning måste dessa apparater vara optimerade på bästa sätt. Detta kommer att underlätta för sjukvårdspersonalen att dra korrekta slutsatser vid beslut under patient övervakning. En patient med t.ex. njursvikt får problem med rening av restprodukter och avlägsnandet av vatten från blodet, vilket är njurarnas uppgift i huvudsak. Vid hemodialys behandling pumpas blodet ut ur kroppen via nålar för att därefter renas i en dialysator som ska ersätta njurarnas funktion. En vanlig biverkning till följd av behandlingen är blodtrycksfall (intradialytisk hypotoni) vilket sker i 25% av alla behandlingar. Resultat från tidigare forskning visar att man kan prediktera blodtrycksfall i samband med hemodialys behandling med hjälp av amplituden hos fotopletysmografi (PPG) signal. PPG signalen fås av pulseoximetern som har en klämma man kan fästa på fingertoppen. Genom att ljus av två våglängder passerar huden kan man med hjälp av absorptionen i blodet avläsa syremättnad och hjärtpuls. Problemet med PPG signalen är att om patienten rör sig påverkar detta amplituden. Därför är det viktigt att ta bort effekten av rörelser på ett sådant sätt att amplitudinformationen är bevarad. Vi undersökte metoder för borttagning av dessa effekter från rörelser hos patienten och föreslog en ny metod som på ett effektivt sätt estimerar en ren PPG signal med amplitudinformationen bevarad. Metoden har ett fåtal designparameterar och konvergerar snabbt mot lösningen. Vår metod skulle kunna användas i en klinisk rutin för prediktering av intradialytisk hypotoni i samband med hemodialys behandling. Det bör dock nämnas att vår studie utfördes på två friska testpersoner och att mer data hade krävts för en fullskalig utvärdering av metoden

    Predictive analysis of auditory attention from physiological signals

    Get PDF
    In recent years, there has been considerable interest in recording physiological signals from the human body to investigate various responses. Attention is one of the key aspects that physiologists, neuroscientists, and engineers have been exploring. Many theories have been established on auditory and visual selective attention. To date, the number of studies investigating the physiological responses of the human body to auditory attention on natural speech is, surprisingly, very limited, and there is a lack of public datasets. Investigating such physiological responses can open the door to new opportunities, as auditory attention plays a key role in many cognitive functionalities, thus impacting on learning and general task performance. In this thesis, we investigated auditory attention on the natural speech by processing physiological signals such as Electroencephalogram (EEG), Galvanic Skin Response (GSR), and Photoplethysmogram (PPG). An experiment was designed based on the well established dichotic listening task. In the experiment, we presented an audio stimulus under different auditory conditions: background noise level, length, and semanticity of the audio message. The experiment was conducted with 25 healthy, non-native speakers. The attention score was computed by counting the number of correctly identified words in the transcribed text response. All the physiological signals were labeled with their auditory condition and attention score. We formulated four predictive tasks exploiting the collected signals: Attention score, Noise level, Semanticity, and LWR (Listening, Writing, Resting, i.e., the state of the participant). In the first part, we analysed all the user text responses collected in the experiment. The statistical analysis reveals a strong dependency of the attention level on the auditory conditions. By applying hierarchical clustering, we could identify the experimental conditions that have similar effects on attention score. Significantly, the effect of semanticity appeared to vanish under high background noise. Then, analysing the signals, we found that the-state-of-the-art algorithms for artifact removal were inefficient for large datasets, as they require manual intervention. Thus, we introduced an EEG artifact removal algorithm with tuning parameters based on Wavelet Packet Decomposition (WPD). The proposed algorithm operates with two tuning parameters and three modes of wavelet filtering: Elimination, Linear Attenuation, and Soft-thresholding. Evaluating the algorithm performance, we observed that it outperforms state-of-the-art algorithms based on Independent Component Analysis (ICA). The evaluation was based on the spectrum, correlation, and distribution of the signals along with the performance in predictive tasks. We also demonstrate that a proper tuning of the algorithm parameters allows achieving further better results. After applying the artifact removal algorithm on EEG, we analysed the signals in terms of correlation of spectral bands of each electrode and attention score, semanticity, noise level, and state of the participant LWR). Next, we analyse the Event-Related Potential (ERP) on Listening, Writing and Resting segments of EEG signal, in addition to spectral analysis of GSR and PPG. With this thesis, we release the collected experimental dataset in the public domain, in order for the scientific community to further investigate the various auditory processing phenomena and their relation with EEG, GSR and PPG responses. The dataset can be used also to improve predictive tasks or design novel Brain-Computer-Interface (BCI) systems based on auditory attention. We also use the deeplearning approach to exploit the spatial relationship of EEG electrodes and inter-subject dependency of a model. As a domain application, we finally discuss the implications of auditory attention assessment for serious games and propose a 3-dimensional difficulty model to design game levels and dynamically adapt the difficulty to the player status

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology
    corecore