403 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationCine phase contrast (PC) magnetic resonance imaging (MRI) is a useful imaging technique that allows for the quantitative measurement of in-vivo blood velocities over the cardiac cycle. Velocity information can be used to diagnose and learn more about the mechanisms of cardio-vascular disease. Compared to other velocity measuring techniques, PC MRI provides high-resolution 2D and 3D spatial velocity information. Unfortunately, as with many other MRI techniques, PC MRI su ers from long acquisition times which places constraints on temporal and spatial resolution. This dissertation outlines the use of temporally constrained reconstruction (TCR) of radial PC data in order to signi cantly reduce the acquisition time so that higher temporal and spatial resolutions can be achieved. A golden angle-based acquisition scheme and a novel self-gating method were used in order to allow for exible selection of temporal resolution and to ameliorate the di culties associated with external electrocardiogram (ECG) gating. Finally, image reconstruction times for TCR are signi cantly reduced by implementation on a high-performance computer cluster. The TCR algorithm is executed in parallel across multiple GPUs achieving a 50 second reconstruction time for a very large cardiac perfusion data set

    Multiresolution models in image restoration and reconstruction with medical and other applications

    Get PDF

    K-Bayes Reconstruction for Perfusion MRI I: Concepts and Application

    Get PDF
    Despite the continued spread of magnetic resonance imaging (MRI) methods in scientific studies and clinical diagnosis, MRI applications are mostly restricted to high-resolution modalities, such as structural MRI. While perfusion MRI gives complementary information on blood flow in the brain, its reduced resolution limits its power for detecting specific disease effects on perfusion patterns. This reduced resolution is compounded by artifacts such as partial volume effects, Gibbs ringing, and aliasing, which are caused by necessarily limited k-space sampling and the subsequent use of discrete Fourier transform (DFT) reconstruction. In this study, a Bayesian modeling procedure (K-Bayes) is developed for the reconstruction of perfusion MRI. The K-Bayes approach (described in detail in Part II: Modeling and Technical Development) combines a process model for the MRI signal in k-space with a Markov random field prior distribution that incorporates high-resolution segmented structural MRI information. A simulation study was performed to determine qualitative and quantitative improvements in K-Bayes reconstructed images compared with those obtained via DFT. The improvements were validated using in vivo perfusion MRI data of the human brain. The K-Bayes reconstructed images were demonstrated to provide reduced bias, increased precision, greater effect sizes, and higher resolution than those obtained using DFT
    corecore