98 research outputs found

    Dynamic Switching of GOP Configurations in High Efficiency Video Coding (HEVC) using Relational Databases for Multi-objective Optimization

    Get PDF
    Our current technological era is flooded with smart devices that provide significant computational resources that require optimal video communications solutions. Optimal and dynamic management of video bitrate, quality and energy needs to take into account their inter-dependencies. With emerging network generations providing higher bandwidth rates, there is also a growing need to communicate video with the best quality subject to the availability of resources such as computational power and available bandwidth. Similarly, for accommodating multiple users, there is a need to minimize bitrate requirements while sustaining video quality for reasonable encoding times. This thesis focuses on providing an efficient mechanism for deriving optimal solutions for High Efficiency Video Coding (HEVC) based on dynamic switching of GOP configurations. The approach provides a basic system for multi-objective optimization approach with constraints on power, video quality and bitrate. This is accomplished by utilizing a recently introduced framework known as Dynamically Reconfigurable Architectures for Time-varying Image Constraints (DRASTIC) in HEVC/H.265 encoder with six different GOP configurations to support optimization modes for minimum rate, maximum quality and minimum computational time (minimum energy in constant power configuration) mode of operation. Pareto-optimal GOP configurations are used in implementing the DRASTIC modes. Additionally, this thesis also presents a relational database formulation for supporting multiple devices that are characterized by different screen resolutions and computational resources. This approach is applicable to internet-based video streaming to different devices where the videos have been pre-compressed. Here, the video configuration modes are determined based on the application of database queries applied to relational databases. The database queries are used to retrieve a Pareto-optimal configuration based on real-time user requirements, device, and network constraints

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods

    Error concealment-aware encoding for robust video transmission

    Get PDF
    In this paper an error concealment-aware encoding scheme is proposed to improve the quality of decoded video in broadcast environments prone to transmission errors and data loss. The proposed scheme is based on a scalable coding approach where the best error concealment (EC) methods to be used at the decoder are optimally determined at the encoder and signalled to the decoder through SEI messages. Such optimal EC modes are found by simulating transmission losses followed by a lagrangian optimisation of the signalling rate - EC distortion cost. A generalised saliency-weighted distortion is used and the residue between coded frames and their EC substitutes is encoded using a rate-controlled enhancement layer. When data loss occurs the decoder uses the signalling information is used at the decoder, in case of data loss, to improve the reconstruction quality. The simulation results show that the proposed method achieves consistent quality gains in comparison with other reference methods and previous works. Using only the EC mode signalling, i.e., without any residue transmitted in the enhancement layer, an average PSNR gain up to 2.95 dB is achieved, while using the full EC-aware scheme, i.e., including residue encoded in the enhancement layer, the proposed scheme outperforms other comparable methods, with PSNR gain up to 3.79 dB

    Multiple description video coding for real-time applications using HEVC

    Full text link
    Remote control vehicles require the transmission of large amounts of data, and video is one of the most important sources for the driver. To ensure reliable video transmission, the encoded video stream is transmitted simultaneously over multiple channels. However, this solution incurs a high transmission cost due to the wireless channel's unreliable and random bit loss characteristics. To address this issue, it is necessary to use more efficient video encoding methods that can make the video stream robust to noise. In this paper, we propose a low-complexity, low-latency 2-channel Multiple Description Coding (MDC) solution with an adaptive Instantaneous Decoder Refresh (IDR) frame period, which is compatible with the HEVC standard. This method shows better resistance to high packet loss rates with lower complexity

    Keyframe insertion : enabling low-latency random access and packet loss repair

    Get PDF
    From a video coding perspective, there are two challenges when performing live video distribution over error-prone networks, such as wireless networks: random access and packet loss repair. There is a scarceness of solutions that do not impact steady-state usage and users with reliable connections. The proposed solution minimizes this impact by complementing a compression-efficient video stream with a companion stream solely consisting of keyframes. Although the core idea is not new, this paper is the first work to provide restrictions and modifications necessary to make this idea work using the High-Efficiency Video Coding (H.265/HEVC) compression standard. Additionally, through thorough quantification, insight is provided on how to provide low-latency fast channel switching capabilities and error recovery at low quality impact, i.e., less than 0.94 average Video Multimethod Assessment Fusion (VMAF) score decrease. Finally, worst-case drift artifacts are described and visualized such that the reader gets an overall picture of using the keyframe insertion technique

    Efficient HEVC-based video adaptation using transcoding

    Get PDF
    In a video transmission system, it is important to take into account the great diversity of the network/end-user constraints. On the one hand, video content is typically streamed over a network that is characterized by different bandwidth capacities. In many cases, the bandwidth is insufficient to transfer the video at its original quality. On the other hand, a single video is often played by multiple devices like PCs, laptops, and cell phones. Obviously, a single video would not satisfy their different constraints. These diversities of the network and devices capacity lead to the need for video adaptation techniques, e.g., a reduction of the bit rate or spatial resolution. Video transcoding, which modifies a property of the video without the change of the coding format, has been well-known as an efficient adaptation solution. However, this approach comes along with a high computational complexity, resulting in huge energy consumption in the network and possibly network latency. This presentation provides several optimization strategies for the transcoding process of HEVC (the latest High Efficiency Video Coding standard) video streams. First, the computational complexity of a bit rate transcoder (transrater) is reduced. We proposed several techniques to speed-up the encoder of a transrater, notably a machine-learning-based approach and a novel coding-mode evaluation strategy have been proposed. Moreover, the motion estimation process of the encoder has been optimized with the use of decision theory and the proposed fast search patterns. Second, the issues and challenges of a spatial transcoder have been solved by using machine-learning algorithms. Thanks to their great performance, the proposed techniques are expected to significantly help HEVC gain popularity in a wide range of modern multimedia applications

    Error and Congestion Resilient Video Streaming over Broadband Wireless

    Get PDF
    In this paper, error resilience is achieved by adaptive, application-layer rateless channel coding, which is used to protect H.264/Advanced Video Coding (AVC) codec data-partitioned videos. A packetization strategy is an effective tool to control error rates and, in the paper, source-coded data partitioning serves to allocate smaller packets to more important compressed video data. The scheme for doing this is applied to real-time streaming across a broadband wireless link. The advantages of rateless code rate adaptivity are then demonstrated in the paper. Because the data partitions of a video slice are each assigned to different network packets, in congestion-prone wireless networks the increased number of packets per slice and their size disparity may increase the packet loss rate from buffer overflows. As a form of congestion resilience, this paper recommends packet-size dependent scheduling as a relatively simple way of alleviating the buffer-overflow problem arising from data-partitioned packets. The paper also contributes an analysis of data partitioning and packet sizes as a prelude to considering scheduling regimes. The combination of adaptive channel coding and prioritized packetization for error resilience with packet-size dependent packet scheduling results in a robust streaming scheme specialized for broadband wireless and real-time streaming applications such as video conferencing, video telephony, and telemedicine

    Towards one video encoder per individual : guided High Efficiency Video Coding

    Get PDF

    HTTP/2-based adaptive streaming of HEVC video over 4G/LTE networks

    Get PDF
    In HTTP Adaptive Streaming, video content is temporally divided into multiple segments, each encoded at several quality levels. The client can adapt the requested video quality to network changes, generally resulting in a smoother playback. Unfortunately, live streaming solutions still often suffer from playout freezes and a large end-to-end delay. By reducing the segment duration, the client can use a smaller temporal buffer and respond even faster to network changes. However, since segments are requested subsequently, this approach is susceptible to high round-trip times. In this letter, we discuss the merits of an HTTP/2 push-based approach. We present the details of a measurement study on the available bandwidth in real 4G/LTE networks, and analyze the induced bit-rate overhead for HEVC-encoded video segments with a sub-second duration. Through an extensive evaluation with the generated video content, we show that the proposed approach results in a higher video quality (+7.5%) and a lower freeze time (-50.4%), and allows to reduce the live delay compared with traditional solutions over HTTP/1.1
    corecore