774 research outputs found

    Interactive searching and browsing of video archives: using text and using image matching

    Get PDF
    Over the last number of decades much research work has been done in the general area of video and audio analysis. Initially the applications driving this included capturing video in digital form and then being able to store, transmit and render it, which involved a large effort to develop compression and encoding standards. The technology needed to do all this is now easily available and cheap, with applications of digital video processing now commonplace, ranging from CCTV (Closed Circuit TV) for security, to home capture of broadcast TV on home DVRs for personal viewing. One consequence of the development in technology for creating, storing and distributing digital video is that there has been a huge increase in the volume of digital video, and this in turn has created a need for techniques to allow effective management of this video, and by that we mean content management. In the BBC, for example, the archives department receives approximately 500,000 queries per year and has over 350,000 hours of content in its library. Having huge archives of video information is hardly any benefit if we have no effective means of being able to locate video clips which are of relevance to whatever our information needs may be. In this chapter we report our work on developing two specific retrieval and browsing tools for digital video information. Both of these are based on an analysis of the captured video for the purpose of automatically structuring into shots or higher level semantic units like TV news stories. Some also include analysis of the video for the automatic detection of features such as the presence or absence of faces. Both include some elements of searching, where a user specifies a query or information need, and browsing, where a user is allowed to browse through sets of retrieved video shots. We support the presentation of these tools with illustrations of actual video retrieval systems developed and working on hundreds of hours of video content

    Indexing, browsing and searching of digital video

    Get PDF
    Video is a communications medium that normally brings together moving pictures with a synchronised audio track into a discrete piece or pieces of information. The size of a “piece ” of video can variously be referred to as a frame, a shot, a scene, a clip, a programme or an episode, and these are distinguished by their lengths and by their composition. We shall return to the definition of each of these in section 4 this chapter. In modern society, video is ver

    VIDEO SCENE DETECTION USING CLOSED CAPTION TEXT

    Get PDF
    Issues in Automatic Video Biography Editing are similar to those in Video Scene Detection and Topic Detection and Tracking (TDT). The techniques of Video Scene Detection and TDT can be applied to interviews to reduce the time necessary to edit a video biography. The system has attacked the problems of extraction of video text, story segmentation, and correlation. This thesis project was divided into three parts: extraction, scene detection, and correlation. The project successfully detected scene breaks in series television episodes and displayed scenes that had similar content

    Unsupervised video indexing on audiovisual characterization of persons

    Get PDF
    Cette thèse consiste à proposer une méthode de caractérisation non-supervisée des intervenants dans les documents audiovisuels, en exploitant des données liées à leur apparence physique et à leur voix. De manière générale, les méthodes d'identification automatique, que ce soit en vidéo ou en audio, nécessitent une quantité importante de connaissances a priori sur le contenu. Dans ce travail, le but est d'étudier les deux modes de façon corrélée et d'exploiter leur propriété respective de manière collaborative et robuste, afin de produire un résultat fiable aussi indépendant que possible de toute connaissance a priori. Plus particulièrement, nous avons étudié les caractéristiques du flux audio et nous avons proposé plusieurs méthodes pour la segmentation et le regroupement en locuteurs que nous avons évaluées dans le cadre d'une campagne d'évaluation. Ensuite, nous avons mené une étude approfondie sur les descripteurs visuels (visage, costume) qui nous ont servis à proposer de nouvelles approches pour la détection, le suivi et le regroupement des personnes. Enfin, le travail s'est focalisé sur la fusion des données audio et vidéo en proposant une approche basée sur le calcul d'une matrice de cooccurrence qui nous a permis d'établir une association entre l'index audio et l'index vidéo et d'effectuer leur correction. Nous pouvons ainsi produire un modèle audiovisuel dynamique des intervenants.This thesis consists to propose a method for an unsupervised characterization of persons within audiovisual documents, by exploring the data related for their physical appearance and their voice. From a general manner, the automatic recognition methods, either in video or audio, need a huge amount of a priori knowledge about their content. In this work, the goal is to study the two modes in a correlated way and to explore their properties in a collaborative and robust way, in order to produce a reliable result as independent as possible from any a priori knowledge. More particularly, we have studied the characteristics of the audio stream and we have proposed many methods for speaker segmentation and clustering and that we have evaluated in a french competition. Then, we have carried a deep study on visual descriptors (face, clothing) that helped us to propose novel approches for detecting, tracking, and clustering of people within the document. Finally, the work was focused on the audiovisual fusion by proposing a method based on computing the cooccurrence matrix that allowed us to establish an association between audio and video indexes, and to correct them. That will enable us to produce a dynamic audiovisual model for each speaker

    Detecção de eventos complexos em vídeos baseada em ritmos visuais

    Get PDF
    Orientador: Hélio PedriniDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O reconhecimento de eventos complexos em vídeos possui várias aplicações práticas relevantes, alavancadas pela grande disponibilidade de câmeras digitais instaladas em aeroportos, estações de ônibus e trens, centros de compras, estádios, hospitais, escolas, prédios, estradas, entre vários outros locais. Avanços na tecnologia digital têm aumentado as capacidades dos sistemas em reconhecer eventos em vídeos por meio do desenvolvimento de dispositivos com alta resolução, dimensões físicas pequenas e altas taxas de amostragem. Muitos trabalhos disponíveis na literatura têm explorado o tema a partir de diferentes pontos de vista. Este trabalho apresenta e avalia uma metodologia para extrair características dos ritmos visuais no contexto de detecção de eventos em vídeos. Um ritmo visual pode ser visto com a projeção de um vídeo em uma imagem, tal que a tarefa de análise de vídeos é reduzida a um problema de análise de imagens, beneficiando-se de seu baixo custo de processamento em termos de tempo e complexidade. Para demonstrar o potencial do ritmo visual na análise de vídeos complexos, três problemas da área de visão computacional são selecionados: detecção de eventos anômalos, classificação de ações humanas e reconhecimento de gestos. No primeiro problema, um modelo e? aprendido com situações de normalidade a partir dos rastros deixados pelas pessoas ao andar, enquanto padro?es representativos das ações são extraídos nos outros dois problemas. Nossa hipo?tese e? de que vídeos similares produzem padro?es semelhantes, tal que o problema de classificação de ações pode ser reduzido a uma tarefa de classificação de imagens. Experimentos realizados em bases públicas de dados demonstram que o método proposto produz resultados promissores com baixo custo de processamento, tornando-o possível aplicar em tempo real. Embora os padro?es dos ritmos visuais sejam extrai?dos como histograma de gradientes, algumas tentativas para adicionar características do fluxo o?tico são discutidas, além de estratégias para obter ritmos visuais alternativosAbstract: The recognition of complex events in videos has currently several important applications, particularly due to the wide availability of digital cameras in environments such as airports, train and bus stations, shopping centers, stadiums, hospitals, schools, buildings, roads, among others. Moreover, advances in digital technology have enhanced the capabilities for detection of video events through the development of devices with high resolution, small physical size, and high sampling rates. Many works available in the literature have explored the subject from different perspectives. This work presents and evaluates a methodology for extracting a feature descriptor from visual rhythms of video sequences in order to address the video event detection problem. A visual rhythm can be seen as the projection of a video onto an image, such that the video analysis task can be reduced into an image analysis problem, benefiting from its low processing cost in terms of time and complexity. To demonstrate the potential of the visual rhythm in the analysis of complex videos, three computer vision problems are selected in this work: abnormal event detection, human action classification, and gesture recognition. The former problem learns a normalcy model from the traces that people leave when they walk, whereas the other two problems extract representative patterns from actions. Our hypothesis is that similar videos produce similar patterns, therefore, the action classification problem is reduced into an image classification task. Experiments conducted on well-known public datasets demonstrate that the method produces promising results at high processing rates, making it possible to work in real time. Even though the visual rhythm features are mainly extracted as histogram of gradients, some attempts for adding optical flow features are discussed, as well as strategies for obtaining alternative visual rhythmsMestradoCiência da ComputaçãoMestre em Ciência da Computação1570507, 1406910, 1374943CAPE

    A framework for cardio-pulmonary resuscitation (CPR) scene retrieval from medical simulation videos based on object and activity detection.

    Get PDF
    In this thesis, we propose a framework to detect and retrieve CPR activity scenes from medical simulation videos. Medical simulation is a modern training method for medical students, where an emergency patient condition is simulated on human-like mannequins and the students act upon. These simulation sessions are recorded by the physician, for later debriefing. With the increasing number of simulation videos, automatic detection and retrieval of specific scenes became necessary. The proposed framework for CPR scene retrieval, would eliminate the conventional approach of using shot detection and frame segmentation techniques. Firstly, our work explores the application of Histogram of Oriented Gradients in three dimensions (HOG3D) to retrieve the scenes containing CPR activity. Secondly, we investigate the use of Local Binary Patterns in Three Orthogonal Planes (LBPTOP), which is the three dimensional extension of the popular Local Binary Patterns. This technique is a robust feature that can detect specific activities from scenes containing multiple actors and activities. Thirdly, we propose an improvement to the above mentioned methods by a combination of HOG3D and LBP-TOP. We use decision level fusion techniques to combine the features. We prove experimentally that the proposed techniques and their combination out-perform the existing system for CPR scene retrieval. Finally, we devise a method to detect and retrieve the scenes containing the breathing bag activity, from the medical simulation videos. The proposed framework is tested and validated using eight medical simulation videos and the results are presented

    DocMIR: An automatic document-based indexing system for meeting retrieval

    Get PDF
    This paper describes the DocMIR system which captures, analyzes and indexes automatically meetings, conferences, lectures, etc. by taking advantage of the documents projected (e.g. slideshows, budget tables, figures, etc.) during the events. For instance, the system can automatically apply the above-mentioned procedures to a lecture and automatically index the event according to the presented slides and their contents. For indexing, the system requires neither specific software installed on the presenter's computer nor any conscious intervention of the speaker throughout the presentation. The only material required by the system is the electronic presentation file of the speaker. Even if not provided, the system would temporally segment the presentation and offer a simple storyboard-like browsing interface. The system runs on several capture boxes connected to cameras and microphones that records events, synchronously. Once the recording is over, indexing is automatically performed by analyzing the content of the captured video containing projected documents and detects the scene changes, identifies the documents, computes their duration and extracts their textual content. Each of the captured images is identified from a repository containing all original electronic documents, captured audio-visual data and metadata created during post-production. The identification is based on documents' signatures, which hierarchically structure features from both layout structure and color distributions of the document images. Video segments are finally enriched with textual content of the identified original documents, which further facilitate the query and retrieval without using OCR. The signature-based indexing method proposed in this article is robust and works with low-resolution images and can be applied to several other applications including real-time document recognition, multimedia IR and augmented reality system

    이야기형 설명문을 활용한 대규모 비디오 학습 연구

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 컴퓨터공학부, 2021. 2. 김건희.Extensive contributions are being made to develop intelligent agents that can recognize and communicate with the world. In this sense, various video-language tasks have drawn a lot of interests in computer vision research, including image/video captioning, video retrieval and video question answering. It can be applied to high-level computer vision tasks and various future industries such as search engines, social marketing, automated driving, and robotics support through QA / dialog generation for the surrounding environment. However, despite these developments, video-language learning suffers from a higher degree of complexity. This thesis investigates methodologies for learning the relationship between videos and free-formed languages, including explanations, conversations, and question-and-answers, so that the machine can easily adapt to target downstream tasks. First, we introduce several methods to learn the relationship between long sentences and videos efficiently. We introduce the approaches for supervising human attention transfer for the video attention model, which shows the video attention mechanism can benefit from explicit human gaze labels. Next, we introduce the end-to-end semantic attention method, which further reduces the visual attention algorithm's complexity by using the representative visual concept word detected by the attention-based detector. As a follow-up study on previous methods, we introduce a JSFusion (Joint Sequence Fusion) method that enables efficient video search and QA by enabling many-to-many matching of attention model. Next, we introduce the CiSIN(Character in Story Identification Network), which uses Attention to increase the performance of character grounding and character re-identification in the movie. Finally, we introduce Transitional Adaptation, which promotes the caption generation models to generates coherent narratives for long videos. In summary, this thesis presents a novel approaches for automatic video description generation/retrieval and shows the benefits of extracting linguistic knowledge for object and motion in the video as well as the advantage of multimodal audio-visual learning for understanding videos. Since the proposed methods are easily adapted to any video-language tasks, it is expected to be applied to the latest models, bringing additional performance improvements. Moving forward, we plan to design an unsupervised video learning framework that can solve many challenges in the industry by integrating an unlimited amount of video, audio, and free-formed language data from the web.시각-언어 학습은 이미지/비디오 캡션(Image/Video captioning), 시각 질의응답(Visual Question and Answering), 비디오 검색(Video Retrieval), 장면 이해(scene understanding), 이벤트 인식(event detection) 등 고차원의 컴퓨터 비전 태스크(task)뿐만 아니라 주변 환경에 대한 질의 응답 및 대화 생성(Dialogue Generation)으로 인터넷 검색 뿐만 아니라 최근 활발한 소셜 마케팅(Social Marketing) 자율 주행(Automated Driving), 로보틱스(Robotics)을 보조하는 등 여러 미래 산업에 적용될 수 있어 활발히 연구되고 있는 중요한 분야이다. 컴퓨터 비젼과 자연어 처리는 이러한 중요성을 바탕으로 각자 고유한 영역에서 발전을 거듭해 왔으나, 최근 딥러닝의 등장과 함께 눈부시게 발전하면서 서로를 보완하며 학습 결과를 향상시키는 등 큰 시너지 효과를 발휘하게 되었다. 하지만 이런 발전에도 불구하고, 비디오-언어간 학습은 문제의 복잡도가 한층 높아 어려움을 겪게 되는 경우가 많다. 본 논문에서는 비디오와 이에 대응하는 설명, 대화, 질의 응답 등 더 나아가 자유 형태의 언어 (Free-formed language)간의 관계를 더욱 효율적으로 학습하고, 목표 임무에 잘 대응할 수 있도록 개선하는 것을 목표로 한다. 먼저, 시각적 복잡도가 이미지보다 높은 비디오와 긴 문장 사이의 관계를 효율적으로 학습하기 위한 여러 방법들을 소개한다. 인간의 주의 인식(Attention) 모델을 비디오-언어 모델에 지도 학습 하는 방법을 소개하고, 이어서 비디오에서 우선 검출된 대표 시각 단어를 매개로 하여 주의 인식(Attention) 알고리즘의 복잡도를 더욱 줄이는 의미 중심 주의 인식 (Semantic Attention) 방법, 어텐션 모델의 다대다 매칭을 기반으로 효율적인 비디오 검색 및 질의응답을 가능케 하는 비디오-언어간 융합 (Joint Sequence Fusion) 방법 등 비디오 주의 인식을 효율적으로 학습시킬 수 있는 방법들을 제시한다. 다음으로는, 주의 인식(Attention) 모델이 물체-단어 간 관계를 넘어 비디오 상에서 인물 검색 (Person Searching) 그리고 인물 재 식별 (Person Re-Identification)을 동시에 수행하며 상승작용을 일으키는 스토리 속 캐릭터 인식 신경망 (Character in Story Identification Network) 을 소개하며, 마지막으로 자기 지도 학습(Self-supervised Learning)을 통해 주의 인식(Attention) 기반 언어 모델이 긴 비디오에 대한 설명을 연관성 있게 잘 생성할 수 있도록 유도하는 방법을 소개한다. 요약하자면, 이 학위 논문에서 제안한 새로운 방법론들은 비디오-언어 학습에 해당하는 비디오 캡션(Video captioning), 비디오 검색(Video Retrieval), 시각 질의응답(Video Question and Answering)등을 해결할 수 있는 기술적 디딤돌이 되며, 비디오 캡션 학습을 통해 학습된 주의 인식 모듈은 검색 및 질의응답, 인물 검색 등 각 네트워크에 이식되면서 새로운 문제들에 대해 동시에 최고 수준(State-of-the-art)의 성능을 달성하였다. 이를 통해 비디오-언어 학습으로 얻은 언어 지식의 이전은 시각-청각을 아우르는 비디오 멀티모달 학습에 큰 도움이 되는 것을 실험적으로 보여준다. 향후 작업 방향 (Future Work)으로는 앞서 연구한 내용들을 기반으로 웹 속에 존재하는 대규모의 언어, 비디오, 오디오 데이터를 통합해 학습에 활용하여 산업계의 많은 난제를 해결할 수 있는 비지도 학습 모델을 만들고자 한다.Chapter 1 Introduction 1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . .8 Chapter 2 Related Work 2.1 Video Captioning . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.2 Video Retrieval with Natural Language . . . . . . . . . . . . . . 12 2.3 Video Question and Answering . . . . . . . . . . . . . . . . . . . 13 2.4 Cross-modal Representation Learning for Vision and LanguageTasks . . . . 15 Chapter 3 Human Attention Transfer for Video Captioning18 3.1 Introduction 3.2 Video Datasets for Caption and Gaze . . . . . . . . . . . . . . . 21 3.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Video Pre-processing and Description . . . . . . . . . . . 22 3.3.2The Recurrent Gaze Prediction (RGP) Model . . . . . . . 23 3.3.3Construction of Visual Feature Pools . . . . . . . . . . . . 24 3.3.4The Decoder for Caption Generation . . . . . . . . . . . . 26 3.3.5Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.1Evaluation of Gaze Prediction . . . . . . . . . . . . . . . . 29 3.4.2Evaluation of Video Captioning . . . . . . . . . . . . . . . 32 3.4.3Human Evaluation via AMT . . . . . . . . . . . . . . . . 35 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter 4 Semantic Word Attention for Video QA and VideoCaptioning 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1.1Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.2Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.1Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.2An Attention Model for Concept Detection . . . . . . . . 42 4.2.3Video-to-Language Models . . . . . . . . . . . . . . . . . 45 4.2.4A Model for Description . . . . . . . . . . . . . . . . . . . 45 4.2.5A Model for Fill-in-the-Blank . . . . . . . . . . . . . . . . 48 4.2.6A Model for Multiple-Choice Test . . . . . . . . . . . . . 50 4.2.7A Model for Retrieval . . . . . . . . . . . . . . . . . . . . 51 4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.1The LSMDC Dataset and Tasks . . . . . . . . . . . . . . 52 4.3.2Quantitative Results . . . . . . . . . . . . . . . . . . . . . 54 4.3.3Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 56 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 5 Joint Sequnece Fusion Attention for Multimodal Sequence Data 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.1Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.2The Joint Semantic Tensor . . . . . . . . . . . . . . . . . 65 5.3.3The Convolutional Hierarchical Decoder . . . . . . . . . . 66 5.3.4An Illustrative Example of How the JSFusion Model Works 68 5.3.5Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.6Implementation of Video-Language Models . . . . . . . . 69 5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4.1LSMDC Dataset and Tasks . . . . . . . . . . . . . . . . . 71 5.4.2MSR-VTT-(RET/MC) Dataset and Tasks . . . . . . . . . 73 5.4.3Quantitative Results . . . . . . . . . . . . . . . . . . . . . 74 5.4.4Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 76 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Chapter 6 Character Re-Identification and Character Ground-ing for Movie Understanding 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.1Video Preprocessing . . . . . . . . . . . . . . . . . . . . . 84 6.3.2Visual Track Embedding . . . . . . . . . . . . . . . . . . . 85 6.3.3Textual Character Embedding . . . . . . . . . . . . . . . 86 6.3.4Character Grounding . . . . . . . . . . . . . . . . . . . . 87 6.3.5Re-Identification . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.6Joint Training . . . . . . . . . . . . . . . . . . . . . . . . 90 6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.4.1Experimental Setup . . . . . . . . . . . . . . . . . . . . . 92 6.4.2Quantitative Results . . . . . . . . . . . . . . . . . . . . . 93 6.4.3Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 95 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Chapter 7 Transitional Adaptation of Pretrained Models forVisual Storytelling 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.3.1The Visual Encoder . . . . . . . . . . . . . . . . . . . . . 104 7.3.2The Language Generator . . . . . . . . . . . . . . . . . . 104 7.3.3Adaptation training . . . . . . . . . . . . . . . . . . . . . 105 7.3.4The Sequential Coherence Loss . . . . . . . . . . . . . . . 105 7.3.5Training with the adaptation Loss . . . . . . . . . . . . . 107 7.3.6Fine-tuning and Inference . . . . . . . . . . . . . . . . . . 107 7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.4.1Experimental Setup . . . . . . . . . . . . . . . . . . . . . 109 7.4.2Quantitative Results . . . . . . . . . . . . . . . . . . . . . 112 7.4.3Further Analyses . . . . . . . . . . . . . . . . . . . . . . . 112 7.4.4Human Evaluation Results . . . . . . . . . . . . . . . . . 115 7.4.5Qualitative Results . . . . . . . . . . . . . . . . . . . . . . 116 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Chapter 8 Conclusion 8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Bibliography ... 123 요약 ... 148 Acknowledgements ... 150Docto

    Automatic summarization of narrative video

    Get PDF
    The amount of digital video content available to users is rapidly increasing. Developments in computer, digital network, and storage technologies all contribute to broaden the offer of digital video. Only users’ attention and time remain scarce resources. Users face the problem of choosing the right content to watch among hundreds of potentially interesting offers. Video and audio have a dynamic nature: they cannot be properly perceived without considering their temporal dimension. This property makes it difficult to get a good idea of what a video item is about without watching it. Video previews aim at solving this issue by providing compact representations of video items that can help users making choices in massive content collections. This thesis is concerned with solving the problem of automatic creation of video previews. To allow fast and convenient content selection, a video preview should take into consideration more than thirty requirements that we have collected by analyzing related literature on video summarization and film production. The list has been completed with additional requirements elicited by interviewing end-users, experts and practitioners in the field of video editing and multimedia. This list represents our collection of user needs with respect to video previews. The requirements, presented from the point of view of the end-users, can be divided into seven categories: duration, continuity, priority, uniqueness, exclusion, structural, and temporal order. Duration requirements deal with the durations of the preview and its subparts. Continuity requirements request video previews to be as continuous as possible. Priority requirements indicate which content should be included in the preview to convey as much information as possible in the shortest time. Uniqueness requirements aim at maximizing the efficiency of the preview by minimizing redundancy. Exclusion requirements indicate which content should not be included in the preview. Structural requirements are concerned with the structural properties of video, while temporal order requirements set the order of the sequences included in the preview. Based on these requirements, we have introduced a formal model of video summarization specialized for the generation of video previews. The basic idea is to translate the requirements into score functions. Each score function is defined to have a non-positive value if a requirement is not met, and to increase depending on the degree of fulfillment of the requirement. A global objective function is then defined that combines all the score functions and the problem of generating a preview is translated into the problem of finding the parts of the initial content that maximize the objective function. Our solution approach is based on two main steps: preparation and selection. In the preparation step, the raw audiovisual data is analyzed and segmented into basic elements that are suitable for being included in a preview. The segmentation of the raw data is based on a shot-cut detection algorithm. In the selection step various content analysis algorithms are used to perform scene segmentation, advertisements detection and to extract numerical descriptors of the content that, introduced in the objective function, allow to estimate the quality of a video preview. The core part of the selection step is the optimization step that consists in searching the set of segments that maximizes the objective function in the space of all possible previews. Instead of solving the optimization problem exactly, an approximate solution is found by means of a local search algorithm using simulated annealing. We have performed a numerical evaluation of the quality of the solutions generated by our algorithm with respect to previews generated randomly or by selecting segments uniformly in time. The results on thirty content items have shown that the local search approach outperforms the other methods. However, based on this evaluation, we cannot conclude that the degree of fulfillment of the requirements achieved by our method satisfies the end-user needs completely. To validate our approach and assess end-user satisfaction, we conducted a user evaluation study in which we compared six aspects of previews generated using our algorithm to human-made previews and to previews generated by subsampling. The results have shown that previews generated using our optimization-based approach are not as good as manually made previews, but have higher quality than previews created using subsample. The differences between the previews are statistically significant

    A Systematic Survey of ML Datasets for Prime CV Research Areas-Media and Metadata

    Get PDF
    The ever-growing capabilities of computers have enabled pursuing Computer Vision through Machine Learning (i.e., MLCV). ML tools require large amounts of information to learn from (ML datasets). These are costly to produce but have received reduced attention regarding standardization. This prevents the cooperative production and exploitation of these resources, impedes countless synergies, and hinders ML research. No global view exists of the MLCV dataset tissue. Acquiring it is fundamental to enable standardization. We provide an extensive survey of the evolution and current state of MLCV datasets (1994 to 2019) for a set of specific CV areas as well as a quantitative and qualitative analysis of the results. Data were gathered from online scientific databases (e.g., Google Scholar, CiteSeerX). We reveal the heterogeneous plethora that comprises the MLCV dataset tissue; their continuous growth in volume and complexity; the specificities of the evolution of their media and metadata components regarding a range of aspects; and that MLCV progress requires the construction of a global standardized (structuring, manipulating, and sharing) MLCV "library". Accordingly, we formulate a novel interpretation of this dataset collective as a global tissue of synthetic cognitive visual memories and define the immediately necessary steps to advance its standardization and integration
    corecore