67 research outputs found

    Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices

    Get PDF
    In the course of evolution nature has arrived at startling materials solutions to ensure survival. Investigations into biological surfaces, ranging from plants, insects and geckos to aquatic animals, have inspired the design of intricate surface patterns to create useful functionalities. This paper reviews the fundamental interaction mechanisms of such micropatterns with liquids, solids, and soft matter such as skin for control of wetting, self-cleaning, anti-fouling, adhesion, skin adherence, and sensing. Compared to conventional chemical strategies, the paradigm of micropatterning enables solutions with superior resource efficiency and sustainability. Associated applications range from water management and robotics to future health monitoring devices. We finally provide an overview of the relevant patterning methods as an appendix

    Functional surface microstructures inspired by nature : From adhesion and wetting principles to sustainable new devices

    Get PDF
    In the course of evolution nature has arrived at startling materials solutions to ensure survival. Investigations into biological surfaces, ranging from plants, insects and geckos to aquatic animals, have inspired the design of intricate surface patterns to create useful functionalities. This paper reviews the fundamental interaction mechanisms of such micropatterns with liquids, solids, and soft matter such as skin for control of wetting, self-cleaning, anti-fouling, adhesion, skin adherence, and sensing. Compared to conventional chemical strategies, the paradigm of micropatterning enables solutions with superior resource efficiency and sustainability. Associated applications range from water management and robotics to future health monitoring devices. We finally provide an overview of the relevant patterning methods as an appendix

    Electrochemistry: A basic and powerful tool for micro- and nanomotor fabrication and characterization

    Get PDF
    Electrochemistry, although an ancient field of knowledge, has become of paramount importance in the synthesis of materials at the nanoscale, with great interest not only for fundamental research but also for practical applications. One of the promising fields in which electrochemistry meets nanoscience and nanotechnology is micro/nanoscale motors. Micro/nano motors, which are devices able to perform complex tasks at the nanoscale, are commonly multifunctional nanostructures of different materials - metals, polymers, oxides- and shapes -spheres, wires, helices- with the ability to be propelled in fluids. Here, we first introduce the topic of micro/nanomotors and make a concise review of the field up to day. We have analyzed the field from different points of view (e.g. materials science and nanotechnology, physics, chemistry, engineering, biology or environmental science) to have a broader view of how the different disciplines have contributed to such exciting and impactful topic. After that, we focus our attention on describing what electrochemical technology is and how it can be successfully used to fabricate and characterize micro/nanostructures composed of different materials and showing complex shapes. Finally, we will review the micro and nanomotors fabricated using electrochemical techniques with applications in biomedicine and environmental remediation, the two main applications investigated so far in this field. Thus, different strategies have thus been shown capable of producing core-shell nanomaterials combining the properties of different materials, multisegmented nanostructures made of, for example, alternating metal and polymer segments to confer them with flexibility or helicoidal systems to favor propulsion. Moreover, further functionalization and interaction with other materials to form hybrid and more complex objects is also shown

    Custom-Designed Biohybrid Micromotor for Potential Disease Treatment

    Get PDF
    Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo transport. Their future application is, however, hindered by the low efficiency of drug encapsulation and their poor adaptability in physiological conditions. To address these challenges, one potential solution is to incorporate micromotors with biological materials as the combination of functional biological entities and smart artificial parts represents a manipulable and biologically friendly approach. This dissertation focuses on the development of custom-designed micromotors combined with sperm and their potential applications on targeted diseases treatment. By means of 2D and 3D lithography methods, microstructures with complex configurations can be fabricated for specific demands. Bovine and human sperm are both for the first time explored as drug carriers thanks to their high encapsulation efficiency of hydrophilic drugs, their powerful self-propulsion and their improved drug-uptake relying on the somatic-cell fusion ability. The hybrid micromotors containing drug loaded sperm and constructed artificial enhancements can be self-propelled by the sperm flagella and remotely guided and released to the target at high precision by employing weak external magnetic fields. As a result, micromotors based on both bovine and human sperm show significant anticancer effect. The application here can be further broadened to other biological environments, in particular to the blood stream, showing the potential on the treatment of blood diseases like blood clotting. Finally, to enhance the treatment efficiency, in particular to control sperm number and drug dose, three strategies are demonstrated to transport swarms of sperm. This research paves the way for the precision medicine based on engineered sperm-based micromotors

    Advanced medical micro-robotics for early diagnosis and therapeutic interventions

    Get PDF
    Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome

    Rolled up microtubes for the capture, guidance and release of single spermatozoa

    Get PDF
    Hybride Mikroschwimmer, die einen biologischen Antrieb und eine kĂŒnstlich hergestellte Mikrostruktur enthalten sind ein attraktiver Ansatz um kontrollierte Bewegung auf kleinstem Maßstab zu erreichen. In dieser Dissertation wird ein neuer hybrider Mikroschwimmer vorgestellt, der aus ferromagnetischen Nanomembranen besteht, die sich zu Mikroröhrchen aufrollen und in der Lage sind, einzelne Spermien einzufangen. Dieser Mikrobioroboter nutzt die starke Antriebskraft der Spermazelle um das magnetische Mikroröhrchen fortzubewegen. Die vorliegende Arbeit beschreibt, wie dieser Mikroschwimmer seine Bewegung vollzieht und wie verschiedene Faktoren wie Temperatur, Radius der Mikroröhrchen, Eindringtiefe der Spermien in das Röhrchen und LĂ€nge der Röhrchen einen Einfluss auf sein Verhalten haben. Richtungskontrolle wird durch externe magnetische Felder realisiert und es wird dargestellt, wie dies zur Trennung der Mikrobioroboter aus einer Mischung von Spermien und Mikroröhrchen genutzt werden kann. Weiterhin werden zwei OberflĂ€chenmodifizierungsmethoden angewandt um die Kupplungseffizienz zwischen Mikroröhrchen und Spermien zu erhöhen. In diesen Methoden wird das extrazellulĂ€re Protein Fibronektin auf die innere RöhrchenoberflĂ€che aufgebracht und dient als Bindungsstoff fĂŒr Spermien. Schließlich wird durch den Einbau temperatursensitiver Material in die Mikroröhrchen ein ferngesteuerter Freisetzungsmechanismus fĂŒr die Spermazelle vorgestellt. Dabei falten sich die Mikroröhrchen bei kleinen Temperaturerhöhungen auf und setzen die Zelle frei. Diese Arbeit diskutiert letztendlich das Potential solch eines hybriden Mikroschwimmers fĂŒr die Anwendung in assistierter Reproduktion.:TABLE OF CONTENTS SELBSTSTÄNDIGKEITSERKLÄRUNG 0 ABSTRACT 1 TABLE OF CONTENTS 3 1 MOTIVATION AND GOALS 5 1.1 MINIATURIZATION: “THERE IS PLENTY OF ROOM AT THE BOTTOM
” 5 1.2 SPERMBOTS: POTENTIAL IMPACT 7 2 BACKGROUND AND STATE-OF-THE-ART 11 2.1 MICROBIOROBOTICS 11 2.2 SPERM MORPHOLOGY AND THEIR JOURNEY TO THE EGG 15 2.3 INFERTILITY AND ASSISTED REPRODUCTION TECHNIQUES 19 2.4 SINGLE CELL RELEASE 22 2.5 STIMULI-RESPONSIVE MATERIALS 25 3 MATERIAL AND METHODS 29 3.1 ROLLED UP TECHNOLOGY 29 3.2 TREATMENT OF BOVINE SPERMATOZOA 32 3.2.1 Preparation of Spermbots 32 3.2.2 Speed Measurements 33 3.2.3 Separation On Chip 33 3.3 SURFACE MODIFICATION OF MICROTUBES 34 3.3.1 Surface Chemistry 35 3.3.2 Microcontact printing 39 3.4 POLYMER TUBE FABRICATION 44 3.4.1 Synthesis of photosensitive monomer 4-Acryloylbenzophenone 44 3.4.2 Synthesis of poly (N-isopropylacrylamide-co-Acryloylbenzophenone) 46 3.4.3 Photolithography of polymeric films 48 3.5 VIABILITY TESTS 51 4 RESULTS AND DISCUSSION 53 4.1 CHARACTERIZATION OF SPERMBOTS 55 4.2 TEMPERATURE INFLUENCE 60 4.3 MAGNETIC CONTROL 62 4.4 SEPARATION ON CHIP 68 4.5 EFFECT OF DECREASED MICROTUBE LENGTH 72 4.6 COUPLING EFFICIENCY 74 4.7 THERMORESPONSIVE POLYMERIC MICROTUBES FOR CELL RELEASE 80 4.8 SPERM VIABILITY TESTS 94 5 SUMMARY AND CONCLUSIONS 97 6 OUTLOOK 101 7 LIST OF FIGURES 107 8 LIST OF TABLES 113 9 ABBREVIATIONS 115 10 CURRICULUM VITAE 117 11 LIST OF PUBLICATIONS 119 JOURNAL ARTICLES 119 CONTRIBUTIONS TO COLLECTED EDITIONS/PROCEEDINGS 121 12 ACKNOWLEDGEMENTS 123 13 REFERENCES 125The search for autonomously moving, highly functional and controllable microdevices is a purpose of current micro/nanobiotechnology research, especially in the area of biomedical applications, for which reason, biocompatible solutions are in demand. In this thesis, a novel type of hybrid microswimmer is fabricated by the combination of rolled up thin nanomembranes with bovine spermatozoa. The microbiorobot presented here uses the powerful motion of the sperm flagella as a propulsion source for the magnetic microtube. This work demonstrates how the microswimmer performs its motion and how several factors such as temperature, radius of the microtube, penetration of the cell inside the microtube and length of the tube have influence on its performance. Directional control mechanisms are offered by external magnetic fields and are presented to be useful for the on-chip separation of the microbiorobots from a mixture of cells and microtubes. Two surface modification methods are presented as means to improve the coupling efficiency between the microtubes and the sperm cells. By these surface functionalizations, the extracellular matrix protein fibronectin is attached on the inner microtube walls and serves as binding agent for the spermatozoa. Finally, a remote release mechanism for the sperm cells is demonstrated by the incorporation of thermoresponsive material into the microtubes, which makes them fold and unfold upon small temperature changes. This work discusses the potential of such microswimmers for the application in assisted reproduction techniques and gives an outlook on future perspectives.:TABLE OF CONTENTS SELBSTSTÄNDIGKEITSERKLÄRUNG 0 ABSTRACT 1 TABLE OF CONTENTS 3 1 MOTIVATION AND GOALS 5 1.1 MINIATURIZATION: “THERE IS PLENTY OF ROOM AT THE BOTTOM
” 5 1.2 SPERMBOTS: POTENTIAL IMPACT 7 2 BACKGROUND AND STATE-OF-THE-ART 11 2.1 MICROBIOROBOTICS 11 2.2 SPERM MORPHOLOGY AND THEIR JOURNEY TO THE EGG 15 2.3 INFERTILITY AND ASSISTED REPRODUCTION TECHNIQUES 19 2.4 SINGLE CELL RELEASE 22 2.5 STIMULI-RESPONSIVE MATERIALS 25 3 MATERIAL AND METHODS 29 3.1 ROLLED UP TECHNOLOGY 29 3.2 TREATMENT OF BOVINE SPERMATOZOA 32 3.2.1 Preparation of Spermbots 32 3.2.2 Speed Measurements 33 3.2.3 Separation On Chip 33 3.3 SURFACE MODIFICATION OF MICROTUBES 34 3.3.1 Surface Chemistry 35 3.3.2 Microcontact printing 39 3.4 POLYMER TUBE FABRICATION 44 3.4.1 Synthesis of photosensitive monomer 4-Acryloylbenzophenone 44 3.4.2 Synthesis of poly (N-isopropylacrylamide-co-Acryloylbenzophenone) 46 3.4.3 Photolithography of polymeric films 48 3.5 VIABILITY TESTS 51 4 RESULTS AND DISCUSSION 53 4.1 CHARACTERIZATION OF SPERMBOTS 55 4.2 TEMPERATURE INFLUENCE 60 4.3 MAGNETIC CONTROL 62 4.4 SEPARATION ON CHIP 68 4.5 EFFECT OF DECREASED MICROTUBE LENGTH 72 4.6 COUPLING EFFICIENCY 74 4.7 THERMORESPONSIVE POLYMERIC MICROTUBES FOR CELL RELEASE 80 4.8 SPERM VIABILITY TESTS 94 5 SUMMARY AND CONCLUSIONS 97 6 OUTLOOK 101 7 LIST OF FIGURES 107 8 LIST OF TABLES 113 9 ABBREVIATIONS 115 10 CURRICULUM VITAE 117 11 LIST OF PUBLICATIONS 119 JOURNAL ARTICLES 119 CONTRIBUTIONS TO COLLECTED EDITIONS/PROCEEDINGS 121 12 ACKNOWLEDGEMENTS 123 13 REFERENCES 12

    Design, Actuation, and Functionalization of Untethered Soft Magnetic Robots with Life-Like Motions: A Review

    Full text link
    Soft robots have demonstrated superior flexibility and functionality than conventional rigid robots. These versatile devices can respond to a wide range of external stimuli (including light, magnetic field, heat, electric field, etc.), and can perform sophisticated tasks. Notably, soft magnetic robots exhibit unparalleled advantages among numerous soft robots (such as untethered control, rapid response, and high safety), and have made remarkable progress in small-scale manipulation tasks and biomedical applications. Despite the promising potential, soft magnetic robots are still in their infancy and require significant advancements in terms of fabrication, design principles, and functional development to be viable for real-world applications. Recent progress shows that bionics can serve as an effective tool for developing soft robots. In light of this, the review is presented with two main goals: (i) exploring how innovative bioinspired strategies can revolutionize the design and actuation of soft magnetic robots to realize various life-like motions; (ii) examining how these bionic systems could benefit practical applications in small-scale solid/liquid manipulation and therapeutic/diagnostic-related biomedical fields

    Active Stimuli-Responsive Polymer Surfaces and Thin Films: Design, Properties and Applications: Active Stimuli-Responsive Polymer Surfaces and Thin Films: Design, Properties and Applications

    Get PDF
    Design of 2D and 3D micropatterned materials is highly important for printing technology, microfluidics, microanalytics, information storage, microelectronics and biotechnology. Biotechnology deserves particular interest among the diversity of possible applications because its opens perspectives for regeneration of tissues and organs that can considerably improve our life. In fact, biotechnology is in constant need for development of microstructured materials with controlled architecture. Such materials can serve either as scaffolds or as microanalytical platforms, where cells are able to self-organize in a programmed manner. Microstructured materials, for example, allow in vitro investigation of complex cell-cell interactions, interactions between cells and engineered materials. With the help of patterned surfaces it was demonstrated that cell adhesion and viability as well as differentiation of stem cells1 depend of on the character of nano- and micro- structures 2 as well as their size. There are number of methods based on optical lithography, atomic force microscopy, printing techniques, chemical vapor deposition, which have been developed and successfully applied for 2D patterning. While each of these methods provides particular advantages, a general trade-off between spatial resolution, throughput, “biocompatibility of method” and usability of fabricated patterned surfaces exists. For example, AFM-based techniques allow very high nanometer resolution and can be used to place small numbers of functional proteins with nanometer lateral resolution, but are limited to low writing speeds and small pattern sizes. Albeit, the resolution of photolithography is lower, while it is much faster and cheaper. Therefore, it is highly desirable to develop methods for high-resolution patterning at reasonably low cost and high throughput. Although many approaches to fabricate sophisticated surface patterns exist, they are almost entirely limited to producing fixed patterns that cannot be intentionally modified or switched on the fly in physiologic environment. This limits the usability of a patterned surface to a single specific application and new microstructures have to be fabricated for new applications. Therefore, it is desirable to develop methods for design of switchable and rewritable patterns. Next, the high-energy of the ultraviolet radiation, which is typically used for photolithography, can be harmful for biological species. It is also highly important to develop an approach for photopatterning where visible light is used instead of UV light. Therefore, it is very important for biotechnological applications to achieve good resolution at low costs, create surface with switchable and reconfigurable patterns, perform patterning in mild physiologic conditions and avoid use of harmful UV light. 3D patterning is experimentally more complicated than 2D one and the applicability of available techniques is substantially limited. For example, interference photolithography allows fabrication of 3D structures with limited thickness. Two-photon photolithography, which allows nanoscale resolution, is very slow and highly expensive. Assembling of 3D structures by stacking of 2D ones is time consuming and does not allow fabrication of fine hollow structures. At the same time, nature offers an enormous arsenal of ideas for the design of novel materials with superior properties. In particular, self-assembly and self-organization being the driving principles of structure formation in nature attract significant interest as promising concepts for the design of intelligent materials 3. Self-folding films are the examples of biomimetic materials4. Such films mimic movement mechanisms of plants 5-7 and are able to self-organize and form complex 3D structures. The self-folding films consist of two materials with different properties. At least one of these materials, active one, can change its volume. Because of non-equal expansion of the materials, the self-folding films are able to form a tubes, capsules or more complex structure. Similar to origami, the self-folding films provide unique possibilities for the straightforward fabrication of highly complex 3D micro-structures with patterned inner and outer walls that cannot be achieved using other currently available technologies. The self-folded micro-objects can be assembled into sophisticated, hierarchically-organized 3D super-constructs with structural anisotropy and highly complex surface patterns. Till now most of the research in the field of self-folding films was focused on inorganic materials. Due to their rigidity, limited biocompatibility and non-biodegradability, application of inorganic self-folding materials for biomedical purposes is limited. Polymers are more suitable for these purposes. There are many factors, which make polymer-based self-folding films particularly attractive. There is a variety of polymers sensitive to different stimuli that allows design of self-folding films, which are able to fold in response to various external signals. There are many polymers changing their properties in physiological ranges of pH and temperature as well as polymers sensitive to biochemical processes. There is a variety of biocompatible and biodegradable polymers. These properties make self-folding polymer highly attractive for biological applications. Polymers undergo considerable and reversible changes of volume that allows design of systems with reversible folding. Fabrication of 3D structures with the size ranging from hundreds of nanometers to centimeters is possible. In spite of their attractive properties, the polymer-based systems remained almost out of focus – ca 15 papers including own ones were published on this topic (see own review 8, state October 2011). Thereby the development of biomimetic materials based on self-folding polymer films is highly desired and can open new horizons for the design of unique 3D materials with advanced properties for lab-on-chip applications, smart materials for everyday life and regenerative medicine

    Responsive nanostructures for controlled alteration of interfacial properties

    Get PDF
    Responsive materials are a class of materials that are capable of “intelligently” changing properties upon exposure to a stimulus. Silk ionomers are introduced as a promising candidate of biopolymers that combine the robust, biocompatible properties of silk fibroin with the responsive properties of poly-l-lysine (PL) and poly-l-glutamic acid (PG). These polypeptides can be assembled using the well-known technique of layer-by-layer processing, allowing for the creation of finely tuned nanoscale multilayers coatings, but their properties remain largely unexplored in the literature. Thus, this research explores the properties of silk ionomer multilayers assembled in different geometries, ranging from planar films to three-dimensional microcapsules with the goal of created responsive systems. These silk ionomers are composed of a silk fibroin backbone with a variable degree of grafting with PG (for anionic species) or PL or PL-block- polyethylene glycol (PEG) (for cationic species). Initially, this research is focused on fundamental properties of the silk ionomer multilayer assemblies, such as stiffness, adhesion, and shearing properties. Elastic modulus of the materials is considered to be one of the most important mechanical parameters, but measurements of stiffness for nanoscale films can be challenging. Thus, we studied the applicability of various contact mechanics models to describe the relationship between force distance curves obtained by atomic force microscopy and the stiffness of various polymeric materials. Beyond considerations of tip size, we also examine the critical regions at which various commonly used indenter geometries are valid. Following this, we employed standard AFM probes and colloidal probes coated with covalently bonded silk ionomers to examine the friction and adhesion between silk ionomers layers. This technique allowed us to compare the interactions between silk ionomers of different chemical composition by using multilayer films containing standard silk ionomers or silk ionomers grafted with polyethylene glycol PEG. This led to the unexpected result that the PEG grafted silk ionomers experienced a higher degree of adhesion and a larger friction coefficient compared to the standard silk ionomers. Next, we move to microscale responsive systems based on silk ionomer multilayers. The first of these studies looks at the effect of assembly pH and chemical composition on the ultimate properties of hollow, spherical microcapsules. This study shows that all compositions and processing conditions yield microcapsules that show a substantial change in elastic modulus, swelling, and permeability, with maximum changes in property values (from acidic pH to basic pH) of around a factor of 6, 1.5, and 5, respectively. In addition, it was discovered that the use of acidic pH assembly inverts the permeability response (i.e. causes a drastic reduction in permeability at higher pH), whilst the use of PEG largely damps any observable trend in permeability, without adversely affecting the swelling or elastic modulus responses. In the second part of these studies, we constructed tri-component photopatterned arrays for the purpose of creating self-rolling films. This study demonstrated that the ultimate geometry of the final rolled shape can be tuned by controlling the thickness of various components, due to the creation of a stress mismatch at high pH conditions. Additionally, it was revealed that pH-driven, semi-reversible delamination of silk ionomers from polystyrene exhibited a change in both magnitude and wavelength with the addition of methanol treated silk fibroin as a top layer. Finally, we showcase examples of biologically compatible systems that incorporate non-polymeric materials in order to generate tunable optical behavior. In one study, we fabricated composite nanocellulose-silk fibroin meshes that contained genetically engineered bacteria that acted as chemically sensitive elements with a fluorescent response. The addition of silk fibroin was found to drastically improve the mechanical properties of the cellulose composite structures, safely contain the bacteria to prevent efflux into the medium, and protect the cells from moderate ultraviolet radiation exposure. The final study concludes with the creation of a self-assembled segmented gold-nickel nanorod array used as a responsive element when anchored into a hydrogen-bonded polymer multilayer. Because of the mild tethering conditions and the magnetic nickel component, the nanorods were able to tilt in response to an external magnetic field. This, in turn, allowed for the creation of a never before reported magnetic-plasmonic system capable of continuously-shifting multiple surface polariton scattering peaks (up to 100 nm shifts) with nearly complete reversibility and rapid (<1 s) response times. Overall, this research develops the understanding of the fundamental properties of several different species of silk ionomers and related polymeric materials. This understanding is then utilized to fabricate pH-responsive systems with drastic changes in modulus, permeability, and geometry. In the end, the research prototypes two types of systems with optical responses and chemical/magnetic stimuli, using materials that are chemically (i.e. silk fibroin-based) or structurally (i.e. multilayers) translatable to future work on silk ionomers. These projects all serve the purpose of advancing the understanding of materials and assembly strategies that will allow for the next generation of bioinspired responsive materials.Ph.D
    • 

    corecore