11,256 research outputs found

    Motif counting beyond five nodes

    Get PDF
    Counting graphlets is a well-studied problem in graph mining and social network analysis. Recently, several papers explored very simple and natural algorithms based on Monte Carlo sampling of Markov Chains (MC), and reported encouraging results. We show, perhaps surprisingly, that such algorithms are outperformed by color coding (CC) [2], a sophisticated algorithmic technique that we extend to the case of graphlet sampling and for which we prove strong statistical guarantees. Our computational experiments on graphs with millions of nodes show CC to be more accurate than MC; furthermore, we formally show that the mixing time of the MC approach is too high in general, even when the input graph has high conductance. All this comes at a price however. While MC is very efficient in terms of space, CC’s memory requirements become demanding when the size of the input graph and that of the graphlets grow. And yet, our experiments show that CC can push the limits of the state-of-the-art, both in terms of the size of the input graph and of that of the graphlets

    Automatic Network Fingerprinting through Single-Node Motifs

    Get PDF
    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs---a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks.Comment: 16 pages (4 figures) plus supporting information 8 pages (5 figures

    Hypergraph Motifs and Their Extensions Beyond Binary

    Full text link
    Hypergraphs naturally represent group interactions, which are omnipresent in many domains: collaborations of researchers, co-purchases of items, and joint interactions of proteins, to name a few. In this work, we propose tools for answering the following questions: (Q1) what are the structural design principles of real-world hypergraphs? (Q2) how can we compare local structures of hypergraphs of different sizes? (Q3) how can we identify domains from which hypergraphs are? We first define hypergraph motifs (h-motifs), which describe the overlapping patterns of three connected hyperedges. Then, we define the significance of each h-motif in a hypergraph as its occurrences relative to those in properly randomized hypergraphs. Lastly, we define the characteristic profile (CP) as the vector of the normalized significance of every h-motif. Regarding Q1, we find that h-motifs' occurrences in 11 real-world hypergraphs from 5 domains are clearly distinguished from those of randomized hypergraphs. Then, we demonstrate that CPs capture local structural patterns unique to each domain, and thus comparing CPs of hypergraphs addresses Q2 and Q3. The concept of CP is extended to represent the connectivity pattern of each node or hyperedge as a vector, which proves useful in node classification and hyperedge prediction. Our algorithmic contribution is to propose MoCHy, a family of parallel algorithms for counting h-motifs' occurrences in a hypergraph. We theoretically analyze their speed and accuracy and show empirically that the advanced approximate version MoCHy-A+ is more accurate and faster than the basic approximate and exact versions, respectively. Furthermore, we explore ternary hypergraph motifs that extends h-motifs by taking into account not only the presence but also the cardinality of intersections among hyperedges. This extension proves beneficial for all previously mentioned applications.Comment: Extended version of VLDB 2020 paper arXiv:2003.0185

    Large-scale analysis of disease pathways in the human interactome

    Full text link
    Discovering disease pathways, which can be defined as sets of proteins associated with a given disease, is an important problem that has the potential to provide clinically actionable insights for disease diagnosis, prognosis, and treatment. Computational methods aid the discovery by relying on protein-protein interaction (PPI) networks. They start with a few known disease-associated proteins and aim to find the rest of the pathway by exploring the PPI network around the known disease proteins. However, the success of such methods has been limited, and failure cases have not been well understood. Here we study the PPI network structure of 519 disease pathways. We find that 90% of pathways do not correspond to single well-connected components in the PPI network. Instead, proteins associated with a single disease tend to form many separate connected components/regions in the network. We then evaluate state-of-the-art disease pathway discovery methods and show that their performance is especially poor on diseases with disconnected pathways. Thus, we conclude that network connectivity structure alone may not be sufficient for disease pathway discovery. However, we show that higher-order network structures, such as small subgraphs of the pathway, provide a promising direction for the development of new methods
    • …
    corecore