126 research outputs found

    Chemical Signal Guided Autonomous Underwater Vehicle

    Get PDF

    Robotic Olfactory-Based Navigation with Mobile Robots

    Get PDF
    Robotic odor source localization (OSL) is a technology that enables mobile robots or autonomous vehicles to find an odor source in unknown environments. It has been viewed as challenging due to the turbulent nature of airflows and the resulting odor plume characteristics. The key to correctly finding an odor source is designing an effective olfactory-based navigation algorithm, which guides the robot to detect emitted odor plumes as cues in finding the source. This dissertation proposes three kinds of olfactory-based navigation methods to improve search efficiency while maintaining a low computational cost, incorporating different machine learning and artificial intelligence methods. A. Adaptive Bio-inspired Navigation via Fuzzy Inference Systems. In nature, animals use olfaction to perform many life-essential activities, such as homing, foraging, mate-seeking, and evading predators. Inspired by the mate-seeking behaviors of male moths, this method presents a behavior-based navigation algorithm for using on a mobile robot to locate an odor source. Unlike traditional bio-inspired methods, which use fixed parameters to formulate robot search trajectories, a fuzzy inference system is designed to perceive the environment and adjust trajectory parameters based on the current search situation. The robot can automatically adapt the scale of search trajectories to fit environmental changes and balance the exploration and exploitation of the search. B. Olfactory-based Navigation via Model-based Reinforcement Learning Methods. This method analogizes the odor source localization as a reinforcement learning problem. During the odor plume tracing process, the belief state in a partially observable Markov decision process model is adapted to generate a source probability map that estimates possible odor source locations. A hidden Markov model is employed to produce a plume distribution map that premises plume propagation areas. Both source and plume estimates are fed to the robot. A decision-making model based on a fuzzy inference system is designed to dynamically fuse information from two maps and balance the exploitation and exploration of the search. After assigning the fused information to reward functions, a value iteration-based path planning algorithm solves the optimal action policy. C. Robotic Odor Source Localization via Deep Learning-based Methods. This method investigates the viability of implementing deep learning algorithms to solve the odor source localization problem. The primary objective is to obtain a deep learning model that guides a mobile robot to find an odor source without explicating search strategies. To achieve this goal, two kinds of deep learning models, including adaptive neuro-fuzzy inference system (ANFIS) and deep neural networks (DNNs), are employed to generate the olfactory-based navigation strategies. Multiple training data sets are acquired by applying two traditional methods in both simulation and on-vehicle tests to train deep learning models. After the supervised training, the deep learning models are verified with unseen search situations in simulation and real-world environments. All proposed algorithms are implemented in simulation and on-vehicle tests to verify their effectiveness. Compared to traditional methods, experiment results show that the proposed algorithms outperform them in terms of the success rate and average search time. Finally, the future research directions are presented at the end of the dissertation

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 Versión preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    Airborne chemical sensing with mobile robots

    Get PDF
    Airborne chemical sensing with mobile robots has been an active research areasince the beginning of the 1990s. This article presents a review of research work in this field,including gas distribution mapping, trail guidance, and the different subtasks of gas sourcelocalisation. Due to the difficulty of modelling gas distribution in a real world environmentwith currently available simulation techniques, we focus largely on experimental work and donot consider publications that are purely based on simulations

    Environmental Monitoring using Autonomous Vehicles: A Survey of Recent Searching Techniques

    Get PDF
    Autonomous vehicles are becoming an essential tool in a wide range of environmental applications that include ambient data acquisition, remote sensing, and mapping of the spatial extent of pollutant spills. Among these applications, pollution source localization has drawn increasing interest due to its scientific and commercial interest and the emergence of a new breed of robotic vehicles capable of performing demanding tasks in harsh environments without human supervision. In this task, the aim is to find the location of a region that is the source of a given substance of interest (e.g. a chemical pollutant at sea or a gas leakage in air) using a group of cooperative autonomous vehicles. Motivated by fast paced advances in this challenging area, this paper surveys recent advances in searching techniques that are at the core of environmental monitoring strategies using autonomous vehicles

    Speed limitation of a mobile robot and methodology of tracing odor plume in airflow environments

    Get PDF
    AbstractThe methodology of tracing odor plume via a mobile robot is considered. In this research, two typical plume-tracing methods, i.e., a zigzagging method and an upwind method, are tested in four airflow fields with different long-time average wind speeds when the robot is set to possessing four different maximum speeds. According to the simulation results, it can be deduced that the zigzagging algorithms would be efficient when the robot moves faster than the odor plume or airflow, and the upwind algorithms are preferred especially when the robot is slow

    Reactive Planning for Olfactory-Based Mobile Robots

    Get PDF
    Abstract-Olfaction is a long distance sense, which is widely used by animals for foraging or reproductive activities. Olfaction plays a significant role in natural life of most animals. For some animals, olfactory cues are far more effective than visual or auditory cues in search for objects such as foods and nests. Although chemical sensing is far simpler than vision or hearing, navigation in a chemical diffusion field is still not well understood. Therefore, this powerful primary sense has rarely been used inside the robotics community. This paper presents an effective olfactory-based planning and search algorithms for using on mobile robots. Olfactory-based mobile robots use odors as a guide to navigate and track in the unknown environments. The planning algorithms are based on Bayesian inference theory and artificial potential field methods. Inputs to the algorithms include the measured flow and the detection or non-detection events that happened at the robot location. This methodology results in algorithms for predicting likelihood of source location versus position. The robot would then optimize a desired trajectory to navigate in the odor plume and locate the odor source location

    Effective Exploration Behavior for Chemical-Sensing Robots

    Get PDF
    Mobile robots that can effectively detect chemical effluents could be useful in a variety of situations, such as disaster relief or drug sniffing. Such a robot might mimic biological systems that exhibit chemotaxis, which is movement towards or away from a chemical stimulant in the environment. Some existing robotic exploration algorithms that mimic chemotaxis suffer from the problems of getting stuck in local maxima and becoming “lost”, or unable to find the chemical if there is no initial detection. We introduce the use of the RapidCell algorithm for mobile robots exploring regions with potentially detectable chemical concentrations. The RapidCell algorithm mimics the biology behind the biased random walk of Escherichia coli (E. coli) bacteria more closely than traditional chemotaxis algorithms by simulating the chemical signaling pathways interior to the cell. For comparison, we implemented a classical chemotaxis controller and a controller based on RapidCell, then tested them in a variety of simulated and real environments (using phototaxis as a surrogate for chemotaxis). We also added simple obstacle avoidance behavior to explore how it affects the success of the algorithms. Both simulations and experiments showed that the RapidCell controller more fully explored the entire region of detectable chemical when compared with the classical controller. If there is no detectable chemical present, the RapidCell controller performs random walk in a much wider range, hence increasing the chance of encountering the chemical. We also simulated an environment with triple effluent to show that the RapidCell controller avoided being captured by the first encountered peak, which is a common issue for the classical controller. Our study demonstrates that mimicking the adapting sensory system of E. coli chemotaxis can help mobile robots to efficiently explore the environment while retaining their sensitivity to the chemical gradient
    corecore